{"title":"采用福尔摩斯方法进行无泄漏认证","authors":"D. Grigoriev, V. Shpilrain","doi":"10.1515/gcc-2012-0009","DOIUrl":null,"url":null,"abstract":"Abstract. We propose a class of authentication schemes that are literally zero-knowledge, as compared to what is formally defined as “zero-knowledge” in cryptographic literature. We call this “no-leak” authentication to distinguish from an established “zero-knowledge” concept. The “no-leak” condition implies “zero-knowledge” (even “perfect zero-knowledge”), but it is actually stronger, as we illustrate by examples. The principal idea behind our schemes is: the verifier challenges the prover with questions that he (the verifier) already knows answers to; therefore, even a computationally unbounded verifier who follows the protocol cannot possibly learn anything new during any number of authentication sessions. This is therefore also true for a computationally unbounded passive adversary.","PeriodicalId":119576,"journal":{"name":"Groups Complex. Cryptol.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"No-leak authentication by the Sherlock Holmes method\",\"authors\":\"D. Grigoriev, V. Shpilrain\",\"doi\":\"10.1515/gcc-2012-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We propose a class of authentication schemes that are literally zero-knowledge, as compared to what is formally defined as “zero-knowledge” in cryptographic literature. We call this “no-leak” authentication to distinguish from an established “zero-knowledge” concept. The “no-leak” condition implies “zero-knowledge” (even “perfect zero-knowledge”), but it is actually stronger, as we illustrate by examples. The principal idea behind our schemes is: the verifier challenges the prover with questions that he (the verifier) already knows answers to; therefore, even a computationally unbounded verifier who follows the protocol cannot possibly learn anything new during any number of authentication sessions. This is therefore also true for a computationally unbounded passive adversary.\",\"PeriodicalId\":119576,\"journal\":{\"name\":\"Groups Complex. Cryptol.\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complex. Cryptol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2012-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complex. Cryptol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2012-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
No-leak authentication by the Sherlock Holmes method
Abstract. We propose a class of authentication schemes that are literally zero-knowledge, as compared to what is formally defined as “zero-knowledge” in cryptographic literature. We call this “no-leak” authentication to distinguish from an established “zero-knowledge” concept. The “no-leak” condition implies “zero-knowledge” (even “perfect zero-knowledge”), but it is actually stronger, as we illustrate by examples. The principal idea behind our schemes is: the verifier challenges the prover with questions that he (the verifier) already knows answers to; therefore, even a computationally unbounded verifier who follows the protocol cannot possibly learn anything new during any number of authentication sessions. This is therefore also true for a computationally unbounded passive adversary.