{"title":"人声分析","authors":"J. P. Teixeira, Nuno Alves, P. Fernandes","doi":"10.4018/978-1-6684-2408-7.ch028","DOIUrl":null,"url":null,"abstract":"Vocal acoustic analysis is becoming a useful tool for the classification and recognition of laryngological pathologies. This technique enables a non-invasive and low-cost assessment of voice disorders, allowing a more efficient, fast, and objective diagnosis. In this work, ANN and SVM were experimented on to classify between dysphonic/control and vocal cord paralysis/control. A vector was made up of 4 jitter parameters, 4 shimmer parameters, and a harmonic to noise ratio (HNR), determined from 3 different vowels at 3 different tones, with a total of 81 features. Variable selection and dimension reduction techniques such as hierarchical clustering, multilinear regression analysis and principal component analysis (PCA) was applied. The classification between dysphonic and control was made with an accuracy of 100% for female and male groups with ANN and SVM. For the classification between vocal cords paralysis and control an accuracy of 78,9% was achieved for female group with SVM, and 81,8% for the male group with ANN.","PeriodicalId":143045,"journal":{"name":"Research Anthology on Artificial Neural Network Applications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vocal Acoustic Analysis\",\"authors\":\"J. P. Teixeira, Nuno Alves, P. Fernandes\",\"doi\":\"10.4018/978-1-6684-2408-7.ch028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vocal acoustic analysis is becoming a useful tool for the classification and recognition of laryngological pathologies. This technique enables a non-invasive and low-cost assessment of voice disorders, allowing a more efficient, fast, and objective diagnosis. In this work, ANN and SVM were experimented on to classify between dysphonic/control and vocal cord paralysis/control. A vector was made up of 4 jitter parameters, 4 shimmer parameters, and a harmonic to noise ratio (HNR), determined from 3 different vowels at 3 different tones, with a total of 81 features. Variable selection and dimension reduction techniques such as hierarchical clustering, multilinear regression analysis and principal component analysis (PCA) was applied. The classification between dysphonic and control was made with an accuracy of 100% for female and male groups with ANN and SVM. For the classification between vocal cords paralysis and control an accuracy of 78,9% was achieved for female group with SVM, and 81,8% for the male group with ANN.\",\"PeriodicalId\":143045,\"journal\":{\"name\":\"Research Anthology on Artificial Neural Network Applications\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Anthology on Artificial Neural Network Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-6684-2408-7.ch028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Anthology on Artificial Neural Network Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-6684-2408-7.ch028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vocal acoustic analysis is becoming a useful tool for the classification and recognition of laryngological pathologies. This technique enables a non-invasive and low-cost assessment of voice disorders, allowing a more efficient, fast, and objective diagnosis. In this work, ANN and SVM were experimented on to classify between dysphonic/control and vocal cord paralysis/control. A vector was made up of 4 jitter parameters, 4 shimmer parameters, and a harmonic to noise ratio (HNR), determined from 3 different vowels at 3 different tones, with a total of 81 features. Variable selection and dimension reduction techniques such as hierarchical clustering, multilinear regression analysis and principal component analysis (PCA) was applied. The classification between dysphonic and control was made with an accuracy of 100% for female and male groups with ANN and SVM. For the classification between vocal cords paralysis and control an accuracy of 78,9% was achieved for female group with SVM, and 81,8% for the male group with ANN.