利用眼睛的微观和宏观运动进行生物识别和呈现攻击检测

Silvia Makowski, L. Jäger, Paul Prasse, T. Scheffer
{"title":"利用眼睛的微观和宏观运动进行生物识别和呈现攻击检测","authors":"Silvia Makowski, L. Jäger, Paul Prasse, T. Scheffer","doi":"10.1109/IJCB48548.2020.9304900","DOIUrl":null,"url":null,"abstract":"We study involuntary micro-movements of both eyes, in addition to saccadic macro-movements, as biometric characteristic. We develop a deep convolutional neural network that processes binocular oculomotoric signals and identifies the viewer. In order to be able to detect presentation attacks, we develop a model in which the movements are a response to a controlled stimulus. The model detects replay attacks by processing both the controlled but randomized stimulus and the ocular response to this stimulus. We acquire eye movement data from 150 participants, with 4 sessions per participant. We observe that the model detects replay attacks reliably; compared to prior work, the model attains substantially lower error rates.","PeriodicalId":417270,"journal":{"name":"2020 IEEE International Joint Conference on Biometrics (IJCB)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Biometric Identification and Presentation-Attack Detection using Micro- and Macro-Movements of the Eyes\",\"authors\":\"Silvia Makowski, L. Jäger, Paul Prasse, T. Scheffer\",\"doi\":\"10.1109/IJCB48548.2020.9304900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study involuntary micro-movements of both eyes, in addition to saccadic macro-movements, as biometric characteristic. We develop a deep convolutional neural network that processes binocular oculomotoric signals and identifies the viewer. In order to be able to detect presentation attacks, we develop a model in which the movements are a response to a controlled stimulus. The model detects replay attacks by processing both the controlled but randomized stimulus and the ocular response to this stimulus. We acquire eye movement data from 150 participants, with 4 sessions per participant. We observe that the model detects replay attacks reliably; compared to prior work, the model attains substantially lower error rates.\",\"PeriodicalId\":417270,\"journal\":{\"name\":\"2020 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB48548.2020.9304900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB48548.2020.9304900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们研究双眼的非自愿微运动,以及眼跳宏观运动,作为生物特征。我们开发了一个深度卷积神经网络,处理双眼动眼力信号并识别观众。为了能够检测呈现攻击,我们开发了一个模型,其中运动是对受控刺激的反应。该模型通过处理控制但随机的刺激和对该刺激的眼部反应来检测重放攻击。我们收集了150名参与者的眼动数据,每个参与者有4个疗程。我们观察到该模型能够可靠地检测重放攻击;与之前的工作相比,该模型的错误率大大降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biometric Identification and Presentation-Attack Detection using Micro- and Macro-Movements of the Eyes
We study involuntary micro-movements of both eyes, in addition to saccadic macro-movements, as biometric characteristic. We develop a deep convolutional neural network that processes binocular oculomotoric signals and identifies the viewer. In order to be able to detect presentation attacks, we develop a model in which the movements are a response to a controlled stimulus. The model detects replay attacks by processing both the controlled but randomized stimulus and the ocular response to this stimulus. We acquire eye movement data from 150 participants, with 4 sessions per participant. We observe that the model detects replay attacks reliably; compared to prior work, the model attains substantially lower error rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信