{"title":"扩展了拉格朗日四平方定理","authors":"J. Lacalle, L.N. Gatti","doi":"10.1016/j.endm.2018.06.036","DOIUrl":null,"url":null,"abstract":"<div><p>We prove the following extension of Lagrange's theorem: given a prime number <em>p</em> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>,</mo><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mn>3</mn></math></span>, such that <span><math><msup><mrow><mo>∥</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∥</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mi>p</mi></math></span> for all <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></math></span> and <span><math><mo>〈</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>〉</mo><mo>=</mo><mn>0</mn></math></span> for all <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo><</mo><mi>j</mi><mo>≤</mo><mi>k</mi></math></span>, then there exists <span><math><mi>v</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> such that <span><math><mo>〈</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mi>v</mi><mo>〉</mo><mo>=</mo><mn>0</mn></math></span> for all <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></math></span> and<span><span><span><math><mo>∥</mo><mi>v</mi><mo>∥</mo><mo>=</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>=</mo><mi>p</mi></math></span></span></span> This means that, in <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span>, any system of orthogonal vectors of norm <em>p</em> can be completed to a base. We conjecture that the result holds for every norm <span><math><mi>p</mi><mo>≥</mo><mn>1</mn></math></span>.</p></div>","PeriodicalId":35408,"journal":{"name":"Electronic Notes in Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.endm.2018.06.036","citationCount":"2","resultStr":"{\"title\":\"Extended Lagrange's four-square theorem\",\"authors\":\"J. Lacalle, L.N. Gatti\",\"doi\":\"10.1016/j.endm.2018.06.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove the following extension of Lagrange's theorem: given a prime number <em>p</em> and <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>,</mo><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mn>3</mn></math></span>, such that <span><math><msup><mrow><mo>∥</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∥</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mi>p</mi></math></span> for all <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></math></span> and <span><math><mo>〈</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>〉</mo><mo>=</mo><mn>0</mn></math></span> for all <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo><</mo><mi>j</mi><mo>≤</mo><mi>k</mi></math></span>, then there exists <span><math><mi>v</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> such that <span><math><mo>〈</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mi>v</mi><mo>〉</mo><mo>=</mo><mn>0</mn></math></span> for all <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></math></span> and<span><span><span><math><mo>∥</mo><mi>v</mi><mo>∥</mo><mo>=</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>=</mo><mi>p</mi></math></span></span></span> This means that, in <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span>, any system of orthogonal vectors of norm <em>p</em> can be completed to a base. We conjecture that the result holds for every norm <span><math><mi>p</mi><mo>≥</mo><mn>1</mn></math></span>.</p></div>\",\"PeriodicalId\":35408,\"journal\":{\"name\":\"Electronic Notes in Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.endm.2018.06.036\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Notes in Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1571065318301276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571065318301276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
We prove the following extension of Lagrange's theorem: given a prime number p and , such that for all and for all , then there exists such that for all and This means that, in , any system of orthogonal vectors of norm p can be completed to a base. We conjecture that the result holds for every norm .
期刊介绍:
Electronic Notes in Discrete Mathematics is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication is appropriate. Organizers of conferences whose proceedings appear in Electronic Notes in Discrete Mathematics, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.