{"title":"外核GPU加速了大型工业环境监测的表面重建","authors":"F. Mirallès, Chen Xu, D. Laurendeau","doi":"10.1109/CARPI.2016.7745633","DOIUrl":null,"url":null,"abstract":"A parallel implementation of a surface reconstruction algorithm is presented. This algorithm uses the vector field surface representation and was adapted in a previous work by the authors to handle large scale environment reconstruction. Two parallel implementations with different memory requirements and processing speeds are described and compared. These parallel implementations increase the vector field computation speed by a factor of up to 31 times relative to a purely serial implementation. The method is demonstrated on different datasets captured on the sites of Hydro-Quebec using a variety of sensors: LiDAR, sonar and the WireScan, an underwater laser scanner designed at our laboratory.","PeriodicalId":104680,"journal":{"name":"2016 4th International Conference on Applied Robotics for the Power Industry (CARPI)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Out-of-core GPU accelerated surface reconstruction for large industrial environment monitoring\",\"authors\":\"F. Mirallès, Chen Xu, D. Laurendeau\",\"doi\":\"10.1109/CARPI.2016.7745633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A parallel implementation of a surface reconstruction algorithm is presented. This algorithm uses the vector field surface representation and was adapted in a previous work by the authors to handle large scale environment reconstruction. Two parallel implementations with different memory requirements and processing speeds are described and compared. These parallel implementations increase the vector field computation speed by a factor of up to 31 times relative to a purely serial implementation. The method is demonstrated on different datasets captured on the sites of Hydro-Quebec using a variety of sensors: LiDAR, sonar and the WireScan, an underwater laser scanner designed at our laboratory.\",\"PeriodicalId\":104680,\"journal\":{\"name\":\"2016 4th International Conference on Applied Robotics for the Power Industry (CARPI)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 4th International Conference on Applied Robotics for the Power Industry (CARPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CARPI.2016.7745633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th International Conference on Applied Robotics for the Power Industry (CARPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CARPI.2016.7745633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Out-of-core GPU accelerated surface reconstruction for large industrial environment monitoring
A parallel implementation of a surface reconstruction algorithm is presented. This algorithm uses the vector field surface representation and was adapted in a previous work by the authors to handle large scale environment reconstruction. Two parallel implementations with different memory requirements and processing speeds are described and compared. These parallel implementations increase the vector field computation speed by a factor of up to 31 times relative to a purely serial implementation. The method is demonstrated on different datasets captured on the sites of Hydro-Quebec using a variety of sensors: LiDAR, sonar and the WireScan, an underwater laser scanner designed at our laboratory.