GNSS最大似然码鉴相器

R. Chrabieh, Nathan Arbeid
{"title":"GNSS最大似然码鉴相器","authors":"R. Chrabieh, Nathan Arbeid","doi":"10.1109/PLANS53410.2023.10139965","DOIUrl":null,"url":null,"abstract":"We present a Maximum Likelihood code phase discriminator for GNSS. In the absence of overlapping multipath, it optimizes the interpolation of a few correlators to locate the peak of the correlation, i.e., the time of arrival of the signal. A key point is that noise whitening is applied post-correlation. We show how it outperforms classical code phase discriminators in terms of converging to an accurate TOA, for both the coherent and non-coherent cases, at high or low SNR. For the non-coherent correlators, we show the benefit of computing the correlators covariance matrix. The discriminator can use any set of correlators having any spacings, and it can account for time drifting correlators and for PRN auto-correlation distortions. A benefit is improved responsiveness to satellite tracking in difficult environments. Faster convergence to the solution enables efficient software implementations and reduced power consumption. The ML discriminator is particularly suitable for computationally intensive wide band systems such as GPS L5, or for terrestrial beacon systems such as TerraPoiNT, 4G or 5G.","PeriodicalId":344794,"journal":{"name":"2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum Likelihood Code Phase Discriminator for GNSS\",\"authors\":\"R. Chrabieh, Nathan Arbeid\",\"doi\":\"10.1109/PLANS53410.2023.10139965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a Maximum Likelihood code phase discriminator for GNSS. In the absence of overlapping multipath, it optimizes the interpolation of a few correlators to locate the peak of the correlation, i.e., the time of arrival of the signal. A key point is that noise whitening is applied post-correlation. We show how it outperforms classical code phase discriminators in terms of converging to an accurate TOA, for both the coherent and non-coherent cases, at high or low SNR. For the non-coherent correlators, we show the benefit of computing the correlators covariance matrix. The discriminator can use any set of correlators having any spacings, and it can account for time drifting correlators and for PRN auto-correlation distortions. A benefit is improved responsiveness to satellite tracking in difficult environments. Faster convergence to the solution enables efficient software implementations and reduced power consumption. The ML discriminator is particularly suitable for computationally intensive wide band systems such as GPS L5, or for terrestrial beacon systems such as TerraPoiNT, 4G or 5G.\",\"PeriodicalId\":344794,\"journal\":{\"name\":\"2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS53410.2023.10139965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS53410.2023.10139965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于GNSS的最大似然码鉴相器。在没有重叠多径的情况下,通过对几个相关器的插值进行优化,定位到相关的峰值,即信号到达的时间。关键是对噪声进行了后相关的白化处理。我们展示了在高信噪比或低信噪比的相干和非相干情况下,它如何在收敛到精确的TOA方面优于经典的码相鉴别器。对于非相干相关器,我们展示了计算相关器协方差矩阵的好处。鉴别器可以使用任何间隔的相关器,并且可以考虑时间漂移相关器和PRN自相关失真。其好处是提高了在困难环境下对卫星跟踪的响应能力。更快地收敛到解决方案可以实现高效的软件实现并降低功耗。ML鉴别器特别适用于计算密集型宽带系统,如GPS L5,或地面信标系统,如TerraPoiNT, 4G或5G。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum Likelihood Code Phase Discriminator for GNSS
We present a Maximum Likelihood code phase discriminator for GNSS. In the absence of overlapping multipath, it optimizes the interpolation of a few correlators to locate the peak of the correlation, i.e., the time of arrival of the signal. A key point is that noise whitening is applied post-correlation. We show how it outperforms classical code phase discriminators in terms of converging to an accurate TOA, for both the coherent and non-coherent cases, at high or low SNR. For the non-coherent correlators, we show the benefit of computing the correlators covariance matrix. The discriminator can use any set of correlators having any spacings, and it can account for time drifting correlators and for PRN auto-correlation distortions. A benefit is improved responsiveness to satellite tracking in difficult environments. Faster convergence to the solution enables efficient software implementations and reduced power consumption. The ML discriminator is particularly suitable for computationally intensive wide band systems such as GPS L5, or for terrestrial beacon systems such as TerraPoiNT, 4G or 5G.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信