基于物理的时域电磁辐射问题深度学习

Yingze Ge, Liangshuai Guo, Maokun Li
{"title":"基于物理的时域电磁辐射问题深度学习","authors":"Yingze Ge, Liangshuai Guo, Maokun Li","doi":"10.1109/IMBioC52515.2022.9790302","DOIUrl":null,"url":null,"abstract":"We explore the application of physics-informed deep learning to solve time-domain electromagnetic problems. This method takes advantage of the differentiability of neural networks and fully integrated with first principles. Compared to traditional approach, there is no need of discretization. Numerical experiment verifies the accuracy of this scheme.","PeriodicalId":305829,"journal":{"name":"2022 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","volume":"64 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Physics-Informed Deep Learning for Time-Domain Electromagnetic Radiation Problem\",\"authors\":\"Yingze Ge, Liangshuai Guo, Maokun Li\",\"doi\":\"10.1109/IMBioC52515.2022.9790302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore the application of physics-informed deep learning to solve time-domain electromagnetic problems. This method takes advantage of the differentiability of neural networks and fully integrated with first principles. Compared to traditional approach, there is no need of discretization. Numerical experiment verifies the accuracy of this scheme.\",\"PeriodicalId\":305829,\"journal\":{\"name\":\"2022 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)\",\"volume\":\"64 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMBioC52515.2022.9790302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMBioC52515.2022.9790302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们探索了物理信息深度学习在解决时域电磁问题中的应用。该方法充分利用了神经网络的可微性,并充分结合了第一性原理。与传统方法相比,该方法不需要离散化。数值实验验证了该方案的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physics-Informed Deep Learning for Time-Domain Electromagnetic Radiation Problem
We explore the application of physics-informed deep learning to solve time-domain electromagnetic problems. This method takes advantage of the differentiability of neural networks and fully integrated with first principles. Compared to traditional approach, there is no need of discretization. Numerical experiment verifies the accuracy of this scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信