Sourav Kumar Bhoi, K. Prasad. K, Rajermani Thinakaran
{"title":"基于物联网无人机系统的水稻叶片病害检测机器智能框架","authors":"Sourav Kumar Bhoi, K. Prasad. K, Rajermani Thinakaran","doi":"10.55011/staiqc.2022.2105","DOIUrl":null,"url":null,"abstract":"Rice is an important food in our day-to-day life. It has rich sources of carbohydrates that are highly essential for body growth and development. Rice is an important crop in agriculture, where it enhances a country’s economy. However, if rice plants arediseased and not monitored regularly then the crop in the field is wasted and it reduces the proper production rate. Therefore, there should be a mechanism which regularly monitors the crop in a field to detect any disease to rice plant. In this paper, a framework is proposed for identification of rice leaf disease using IoT based Unmanned Aerial Vehicle (UAV) system. Here, the UAV monitors an entire field, capture the images and sends the images to the machine intelligent cloud for detection of rice leaf diseases. The cloud is installed with a proposed stacking classifier that classify the diseased rice plant images received from UAV into different categories. The dataset of these rice leaf diseases is collected from Kaggle source. The performance of the stacking classifier installed at the cloud is evaluated using Python based Orange 3.26 tool. It is observed form the results that stacking classifier outperforms the conventional machine learning models in detecting the actual disease with a classification accuracy (CA) of 86.7%.","PeriodicalId":231409,"journal":{"name":"Sparklinglight Transactions on Artificial Intelligence and Quantum Computing","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Machine Intelligent Framework for Detection of Rice Leaf Diseases in Field Using IoT Based Unmanned Aerial Vehicle System\",\"authors\":\"Sourav Kumar Bhoi, K. Prasad. K, Rajermani Thinakaran\",\"doi\":\"10.55011/staiqc.2022.2105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rice is an important food in our day-to-day life. It has rich sources of carbohydrates that are highly essential for body growth and development. Rice is an important crop in agriculture, where it enhances a country’s economy. However, if rice plants arediseased and not monitored regularly then the crop in the field is wasted and it reduces the proper production rate. Therefore, there should be a mechanism which regularly monitors the crop in a field to detect any disease to rice plant. In this paper, a framework is proposed for identification of rice leaf disease using IoT based Unmanned Aerial Vehicle (UAV) system. Here, the UAV monitors an entire field, capture the images and sends the images to the machine intelligent cloud for detection of rice leaf diseases. The cloud is installed with a proposed stacking classifier that classify the diseased rice plant images received from UAV into different categories. The dataset of these rice leaf diseases is collected from Kaggle source. The performance of the stacking classifier installed at the cloud is evaluated using Python based Orange 3.26 tool. It is observed form the results that stacking classifier outperforms the conventional machine learning models in detecting the actual disease with a classification accuracy (CA) of 86.7%.\",\"PeriodicalId\":231409,\"journal\":{\"name\":\"Sparklinglight Transactions on Artificial Intelligence and Quantum Computing\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sparklinglight Transactions on Artificial Intelligence and Quantum Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55011/staiqc.2022.2105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sparklinglight Transactions on Artificial Intelligence and Quantum Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55011/staiqc.2022.2105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Machine Intelligent Framework for Detection of Rice Leaf Diseases in Field Using IoT Based Unmanned Aerial Vehicle System
Rice is an important food in our day-to-day life. It has rich sources of carbohydrates that are highly essential for body growth and development. Rice is an important crop in agriculture, where it enhances a country’s economy. However, if rice plants arediseased and not monitored regularly then the crop in the field is wasted and it reduces the proper production rate. Therefore, there should be a mechanism which regularly monitors the crop in a field to detect any disease to rice plant. In this paper, a framework is proposed for identification of rice leaf disease using IoT based Unmanned Aerial Vehicle (UAV) system. Here, the UAV monitors an entire field, capture the images and sends the images to the machine intelligent cloud for detection of rice leaf diseases. The cloud is installed with a proposed stacking classifier that classify the diseased rice plant images received from UAV into different categories. The dataset of these rice leaf diseases is collected from Kaggle source. The performance of the stacking classifier installed at the cloud is evaluated using Python based Orange 3.26 tool. It is observed form the results that stacking classifier outperforms the conventional machine learning models in detecting the actual disease with a classification accuracy (CA) of 86.7%.