{"title":"GPU加速顺序二次规划","authors":"Xiukun Hu, C. Douglas, R. Lumley, Mookwon Seo","doi":"10.1109/DCABES.2017.8","DOIUrl":null,"url":null,"abstract":"Nonlinear optimization problems arise in all industries. Accelerating optimization solvers is desirable. Efforts have been made to accelerate interior point methods for large scale problems. However, since the interior point algorithm used requires many function evaluations, the acceleration of the algorithm becomes less beneficial. We introduce a way to accelerate the sequential quadratic programming method, which is characterized by minimizing function evaluations, on graphical processing units.","PeriodicalId":446641,"journal":{"name":"2017 16th International Symposium on Distributed Computing and Applications to Business, Engineering and Science (DCABES)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"GPU Accelerated Sequential Quadratic Programming\",\"authors\":\"Xiukun Hu, C. Douglas, R. Lumley, Mookwon Seo\",\"doi\":\"10.1109/DCABES.2017.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonlinear optimization problems arise in all industries. Accelerating optimization solvers is desirable. Efforts have been made to accelerate interior point methods for large scale problems. However, since the interior point algorithm used requires many function evaluations, the acceleration of the algorithm becomes less beneficial. We introduce a way to accelerate the sequential quadratic programming method, which is characterized by minimizing function evaluations, on graphical processing units.\",\"PeriodicalId\":446641,\"journal\":{\"name\":\"2017 16th International Symposium on Distributed Computing and Applications to Business, Engineering and Science (DCABES)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 16th International Symposium on Distributed Computing and Applications to Business, Engineering and Science (DCABES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCABES.2017.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th International Symposium on Distributed Computing and Applications to Business, Engineering and Science (DCABES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCABES.2017.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonlinear optimization problems arise in all industries. Accelerating optimization solvers is desirable. Efforts have been made to accelerate interior point methods for large scale problems. However, since the interior point algorithm used requires many function evaluations, the acceleration of the algorithm becomes less beneficial. We introduce a way to accelerate the sequential quadratic programming method, which is characterized by minimizing function evaluations, on graphical processing units.