基于自适应平方欧氏距离的混合特征型符号数据聚类方法

R. D. de Souza, F. D. de Carvalho
{"title":"基于自适应平方欧氏距离的混合特征型符号数据聚类方法","authors":"R. D. de Souza, F. D. de Carvalho","doi":"10.1109/ichis.2007.4344046","DOIUrl":null,"url":null,"abstract":"This work presents a clustering method for mixed feature-type symbolic data. The presented method needs a previous pre-processing step to transform mixed symbolic data into modal symbolic data. The dynamic clustering algorithm with adaptive distances has then as input a set of vectors of modal symbolic data (weight distributions) and furnishes a partition and a prototype to each class by optimizing an adequacy criterion that measures the fitting between the clusters and their representatives based on adaptive squared Euclidean distances. Examples with synthetic symbolic data sets and an application with a real symbolic data sets show the usefulness of this method.","PeriodicalId":359991,"journal":{"name":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Clustering Method for Mixed Feature-Type Symbolic Data using Adaptive Squared Euclidean Distances\",\"authors\":\"R. D. de Souza, F. D. de Carvalho\",\"doi\":\"10.1109/ichis.2007.4344046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a clustering method for mixed feature-type symbolic data. The presented method needs a previous pre-processing step to transform mixed symbolic data into modal symbolic data. The dynamic clustering algorithm with adaptive distances has then as input a set of vectors of modal symbolic data (weight distributions) and furnishes a partition and a prototype to each class by optimizing an adequacy criterion that measures the fitting between the clusters and their representatives based on adaptive squared Euclidean distances. Examples with synthetic symbolic data sets and an application with a real symbolic data sets show the usefulness of this method.\",\"PeriodicalId\":359991,\"journal\":{\"name\":\"7th International Conference on Hybrid Intelligent Systems (HIS 2007)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Conference on Hybrid Intelligent Systems (HIS 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ichis.2007.4344046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ichis.2007.4344046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种混合特征型符号数据的聚类方法。该方法需要先进行预处理,将混合符号数据转换为模态符号数据。具有自适应距离的动态聚类算法将一组模态符号数据(权重分布)作为输入,并通过优化基于自适应平方欧氏距离度量聚类与其代表之间拟合的充分性准则,为每个类提供分区和原型。合成符号数据集的实例和实际符号数据集的应用表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Clustering Method for Mixed Feature-Type Symbolic Data using Adaptive Squared Euclidean Distances
This work presents a clustering method for mixed feature-type symbolic data. The presented method needs a previous pre-processing step to transform mixed symbolic data into modal symbolic data. The dynamic clustering algorithm with adaptive distances has then as input a set of vectors of modal symbolic data (weight distributions) and furnishes a partition and a prototype to each class by optimizing an adequacy criterion that measures the fitting between the clusters and their representatives based on adaptive squared Euclidean distances. Examples with synthetic symbolic data sets and an application with a real symbolic data sets show the usefulness of this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信