上下文中相关概念的计算

V. Rockai
{"title":"上下文中相关概念的计算","authors":"V. Rockai","doi":"10.1109/SAMI.2010.5423704","DOIUrl":null,"url":null,"abstract":"Word sense disambiguation is an opened issue in the text mining and natural language processing for some time. Automatic acquisition of all distinct senses for polysemy words is still a big problem in the computer science. This paper discusses an approach to generate related words for an input word in some context. The context is used for the filtering of the related words for their distinct sense subsets. This approach is based on the associative learning of concepts and can be a step forward to the word sense disambiguation problem solving.","PeriodicalId":306051,"journal":{"name":"2010 IEEE 8th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing of related concepts in a context\",\"authors\":\"V. Rockai\",\"doi\":\"10.1109/SAMI.2010.5423704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Word sense disambiguation is an opened issue in the text mining and natural language processing for some time. Automatic acquisition of all distinct senses for polysemy words is still a big problem in the computer science. This paper discusses an approach to generate related words for an input word in some context. The context is used for the filtering of the related words for their distinct sense subsets. This approach is based on the associative learning of concepts and can be a step forward to the word sense disambiguation problem solving.\",\"PeriodicalId\":306051,\"journal\":{\"name\":\"2010 IEEE 8th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 8th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMI.2010.5423704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 8th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI.2010.5423704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

词义消歧一直是文本挖掘和自然语言处理领域的一个开放性问题。多义词的全义自动获取一直是计算机科学中的一个难题。本文讨论了一种在特定语境下为输入词生成相关词的方法。上下文用于过滤相关单词的不同含义子集。该方法基于概念的联想学习,是解决词义消歧问题的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing of related concepts in a context
Word sense disambiguation is an opened issue in the text mining and natural language processing for some time. Automatic acquisition of all distinct senses for polysemy words is still a big problem in the computer science. This paper discusses an approach to generate related words for an input word in some context. The context is used for the filtering of the related words for their distinct sense subsets. This approach is based on the associative learning of concepts and can be a step forward to the word sense disambiguation problem solving.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信