基于元数据的有效协同推荐组合方法

K. Kim, Jun Yeop Lee, Y. Choi
{"title":"基于元数据的有效协同推荐组合方法","authors":"K. Kim, Jun Yeop Lee, Y. Choi","doi":"10.1145/2663761.2664189","DOIUrl":null,"url":null,"abstract":"In this paper, we propose content-metadata based combined approach to effective collaborative recommendation. Our approach combines user-item rating scores and/or trust network information with content-metadata compensatively for boosting collaborative recommendation. In experiment, we identified that our approach could considerably improve recommendation performance when compared to existing collaborative recommendation methods.","PeriodicalId":120340,"journal":{"name":"Research in Adaptive and Convergent Systems","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Metadata based combined approach for effective collaborative recommendation\",\"authors\":\"K. Kim, Jun Yeop Lee, Y. Choi\",\"doi\":\"10.1145/2663761.2664189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose content-metadata based combined approach to effective collaborative recommendation. Our approach combines user-item rating scores and/or trust network information with content-metadata compensatively for boosting collaborative recommendation. In experiment, we identified that our approach could considerably improve recommendation performance when compared to existing collaborative recommendation methods.\",\"PeriodicalId\":120340,\"journal\":{\"name\":\"Research in Adaptive and Convergent Systems\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Adaptive and Convergent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2663761.2664189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Adaptive and Convergent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2663761.2664189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于内容-元数据的高效协同推荐方法。我们的方法将用户-项目评分和/或信任网络信息与内容-元数据相结合,以补偿性地促进协作推荐。在实验中,我们发现与现有的协作推荐方法相比,我们的方法可以显著提高推荐性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metadata based combined approach for effective collaborative recommendation
In this paper, we propose content-metadata based combined approach to effective collaborative recommendation. Our approach combines user-item rating scores and/or trust network information with content-metadata compensatively for boosting collaborative recommendation. In experiment, we identified that our approach could considerably improve recommendation performance when compared to existing collaborative recommendation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信