{"title":"引力波观测中洛伦兹不变性违反的约束","authors":"A. Samajdar","doi":"10.1142/9789811213984_0020","DOIUrl":null,"url":null,"abstract":"Using a deformed dispersion relation for gravitational waves, Advanced LIGO and Advanced Virgo have been able to place constraints on violations of local Lorentz invariance as well as the mass of the graviton. We summarise the method to obtain the current bounds from the 10 significant binary black hole detections made during the first and second observing runs of the above detectors.","PeriodicalId":104099,"journal":{"name":"CPT and Lorentz Symmetry","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Constraints on Lorentz-Invariance Violations from Gravitational-Wave Observations\",\"authors\":\"A. Samajdar\",\"doi\":\"10.1142/9789811213984_0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a deformed dispersion relation for gravitational waves, Advanced LIGO and Advanced Virgo have been able to place constraints on violations of local Lorentz invariance as well as the mass of the graviton. We summarise the method to obtain the current bounds from the 10 significant binary black hole detections made during the first and second observing runs of the above detectors.\",\"PeriodicalId\":104099,\"journal\":{\"name\":\"CPT and Lorentz Symmetry\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CPT and Lorentz Symmetry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789811213984_0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT and Lorentz Symmetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811213984_0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Constraints on Lorentz-Invariance Violations from Gravitational-Wave Observations
Using a deformed dispersion relation for gravitational waves, Advanced LIGO and Advanced Virgo have been able to place constraints on violations of local Lorentz invariance as well as the mass of the graviton. We summarise the method to obtain the current bounds from the 10 significant binary black hole detections made during the first and second observing runs of the above detectors.