电磁散射算子的基本模

N. Budko, A. Samokhin
{"title":"电磁散射算子的基本模","authors":"N. Budko, A. Samokhin","doi":"10.1109/ICEAA.2007.4387459","DOIUrl":null,"url":null,"abstract":"Previously we have shown that apart from discrete spectrum (eigenvalues), the three-dimensional volume integral operator of electromagnetic scattering has a continuous essential spectrum as well. Here we derive the corresponding essential modes. We use the Weyl definition of essential spectrum, where such modes are described in terms of singular sequences. A closed form expression for the required sequence is obtained and its properties are analyzed. We also discuss the physical meaning and the conditions on the excitation of the essential resonance.","PeriodicalId":273595,"journal":{"name":"2007 International Conference on Electromagnetics in Advanced Applications","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Essential Modes of the Electromagnetic Scattering Operator\",\"authors\":\"N. Budko, A. Samokhin\",\"doi\":\"10.1109/ICEAA.2007.4387459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previously we have shown that apart from discrete spectrum (eigenvalues), the three-dimensional volume integral operator of electromagnetic scattering has a continuous essential spectrum as well. Here we derive the corresponding essential modes. We use the Weyl definition of essential spectrum, where such modes are described in terms of singular sequences. A closed form expression for the required sequence is obtained and its properties are analyzed. We also discuss the physical meaning and the conditions on the excitation of the essential resonance.\",\"PeriodicalId\":273595,\"journal\":{\"name\":\"2007 International Conference on Electromagnetics in Advanced Applications\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Electromagnetics in Advanced Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEAA.2007.4387459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Electromagnetics in Advanced Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAA.2007.4387459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以前我们已经证明,除了离散谱(特征值)外,电磁散射的三维体积积分算子也具有连续的本质谱。在这里,我们推导出相应的本质模态。我们使用Weyl本质谱的定义,其中这些模是用奇异序列来描述的。得到了所需序列的封闭表达式,并分析了其性质。讨论了本质共振的物理意义和激发的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Essential Modes of the Electromagnetic Scattering Operator
Previously we have shown that apart from discrete spectrum (eigenvalues), the three-dimensional volume integral operator of electromagnetic scattering has a continuous essential spectrum as well. Here we derive the corresponding essential modes. We use the Weyl definition of essential spectrum, where such modes are described in terms of singular sequences. A closed form expression for the required sequence is obtained and its properties are analyzed. We also discuss the physical meaning and the conditions on the excitation of the essential resonance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信