基于主题建模的多词生成查询推荐

M. Mitsui, C. Shah
{"title":"基于主题建模的多词生成查询推荐","authors":"M. Mitsui, C. Shah","doi":"10.1145/2959100.2959154","DOIUrl":null,"url":null,"abstract":"Query recommendation predominantly relies on search logs to use existing queries for recommendation, typically calculating query similarity metrics or transition probabilities from the log. While effective, such recommendations are limited to the queries, words, and phrases in the log. They hence do not recommend potentially useful, entirely novel queries. Recent query recommendation methods have proposed generating queries on a topical or thematic level, though current approaches are limited to generating single words. We propose a hybrid method for constructing multi-word queries in this generative sense. It uses Latent Dirichlet Allocation to generate a topic for exploration and skip-gram modeling to generate queries from the topic. According to additional evaluation metrics we present, our model improves diversity and has some room for improving relevance, yet offers an interesting avenue for query recommendation.","PeriodicalId":315651,"journal":{"name":"Proceedings of the 10th ACM Conference on Recommender Systems","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Multi-Word Generative Query Recommendation Using Topic Modeling\",\"authors\":\"M. Mitsui, C. Shah\",\"doi\":\"10.1145/2959100.2959154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Query recommendation predominantly relies on search logs to use existing queries for recommendation, typically calculating query similarity metrics or transition probabilities from the log. While effective, such recommendations are limited to the queries, words, and phrases in the log. They hence do not recommend potentially useful, entirely novel queries. Recent query recommendation methods have proposed generating queries on a topical or thematic level, though current approaches are limited to generating single words. We propose a hybrid method for constructing multi-word queries in this generative sense. It uses Latent Dirichlet Allocation to generate a topic for exploration and skip-gram modeling to generate queries from the topic. According to additional evaluation metrics we present, our model improves diversity and has some room for improving relevance, yet offers an interesting avenue for query recommendation.\",\"PeriodicalId\":315651,\"journal\":{\"name\":\"Proceedings of the 10th ACM Conference on Recommender Systems\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2959100.2959154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2959100.2959154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

查询推荐主要依赖于搜索日志来使用现有的查询进行推荐,通常是从日志中计算查询相似度度量或转移概率。这种建议虽然有效,但仅限于日志中的查询、单词和短语。因此,他们不推荐可能有用的、完全新颖的查询。最近的查询推荐方法已经提出在主题或主题级别上生成查询,尽管当前的方法仅限于生成单个单词。我们提出了一种混合方法来构建这种生成意义上的多词查询。它使用Latent Dirichlet Allocation生成主题进行探索,并使用skip-gram建模从主题生成查询。根据我们提供的其他评估指标,我们的模型提高了多样性,并有提高相关性的空间,但为查询推荐提供了一个有趣的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Word Generative Query Recommendation Using Topic Modeling
Query recommendation predominantly relies on search logs to use existing queries for recommendation, typically calculating query similarity metrics or transition probabilities from the log. While effective, such recommendations are limited to the queries, words, and phrases in the log. They hence do not recommend potentially useful, entirely novel queries. Recent query recommendation methods have proposed generating queries on a topical or thematic level, though current approaches are limited to generating single words. We propose a hybrid method for constructing multi-word queries in this generative sense. It uses Latent Dirichlet Allocation to generate a topic for exploration and skip-gram modeling to generate queries from the topic. According to additional evaluation metrics we present, our model improves diversity and has some room for improving relevance, yet offers an interesting avenue for query recommendation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信