dr - unet++:一种基于磁共振图像的左心室分割方法

Dinh-Hung Le, Nhat-Minh Le, Khac-Hung Le, Van-Truong Pham, Thi-Thao Tran
{"title":"dr - unet++:一种基于磁共振图像的左心室分割方法","authors":"Dinh-Hung Le, Nhat-Minh Le, Khac-Hung Le, Van-Truong Pham, Thi-Thao Tran","doi":"10.1109/GTSD54989.2022.9989083","DOIUrl":null,"url":null,"abstract":"Precise and automatic segmentation of the left ventricle (LV) in cardiac magnetic resonance imaging (MRI) can help cardiologists make accurate diagnoses and decisions. In the revolution of Deep Learning, many LV image segmentation models have been developed and shown promising performance. Nevertheless, segmentation of the LV is still a nontrivial task due to challenges in the cardiac MR images such as the presence of intensity inhomogeneity, clutter, and object size variations. In this study, we propose DR- Unet++, an enhanced DR-Unet architecture, for cardiac segmentation tasks. The DR-Unet++ model, which utilizes advanced Deep Learning techniques, provides better feature extraction for the segmentation of desired segmented objects. Our tests on the ACDC dataset and Sunnybrook Cardiac dataset show that DR-Unet++ outperforms other modern models in terms of Dice coefficient and IoU metric and demonstrates its potential in biomedical image segmentation tasks.","PeriodicalId":125445,"journal":{"name":"2022 6th International Conference on Green Technology and Sustainable Development (GTSD)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DR-Unet++: An Approach for Left Ventricle Segmentation from Magnetic Resonance Images\",\"authors\":\"Dinh-Hung Le, Nhat-Minh Le, Khac-Hung Le, Van-Truong Pham, Thi-Thao Tran\",\"doi\":\"10.1109/GTSD54989.2022.9989083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precise and automatic segmentation of the left ventricle (LV) in cardiac magnetic resonance imaging (MRI) can help cardiologists make accurate diagnoses and decisions. In the revolution of Deep Learning, many LV image segmentation models have been developed and shown promising performance. Nevertheless, segmentation of the LV is still a nontrivial task due to challenges in the cardiac MR images such as the presence of intensity inhomogeneity, clutter, and object size variations. In this study, we propose DR- Unet++, an enhanced DR-Unet architecture, for cardiac segmentation tasks. The DR-Unet++ model, which utilizes advanced Deep Learning techniques, provides better feature extraction for the segmentation of desired segmented objects. Our tests on the ACDC dataset and Sunnybrook Cardiac dataset show that DR-Unet++ outperforms other modern models in terms of Dice coefficient and IoU metric and demonstrates its potential in biomedical image segmentation tasks.\",\"PeriodicalId\":125445,\"journal\":{\"name\":\"2022 6th International Conference on Green Technology and Sustainable Development (GTSD)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th International Conference on Green Technology and Sustainable Development (GTSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GTSD54989.2022.9989083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Green Technology and Sustainable Development (GTSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GTSD54989.2022.9989083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在心脏磁共振成像(MRI)中对左心室(LV)进行精确和自动的分割可以帮助心脏病专家做出准确的诊断和决策。在深度学习的革命中,许多LV图像分割模型被开发出来并显示出良好的性能。然而,由于心脏MR图像中存在强度不均匀性、杂波和物体大小变化等挑战,左室分割仍然是一项艰巨的任务。在这项研究中,我们提出了DR-Unet ++,一种增强的DR-Unet架构,用于心脏分割任务。dr - unet++模型利用了先进的深度学习技术,为分割目标提供了更好的特征提取。我们对ACDC数据集和Sunnybrook心脏数据集的测试表明,dr - unet++在Dice系数和IoU度量方面优于其他现代模型,并展示了其在生物医学图像分割任务中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DR-Unet++: An Approach for Left Ventricle Segmentation from Magnetic Resonance Images
Precise and automatic segmentation of the left ventricle (LV) in cardiac magnetic resonance imaging (MRI) can help cardiologists make accurate diagnoses and decisions. In the revolution of Deep Learning, many LV image segmentation models have been developed and shown promising performance. Nevertheless, segmentation of the LV is still a nontrivial task due to challenges in the cardiac MR images such as the presence of intensity inhomogeneity, clutter, and object size variations. In this study, we propose DR- Unet++, an enhanced DR-Unet architecture, for cardiac segmentation tasks. The DR-Unet++ model, which utilizes advanced Deep Learning techniques, provides better feature extraction for the segmentation of desired segmented objects. Our tests on the ACDC dataset and Sunnybrook Cardiac dataset show that DR-Unet++ outperforms other modern models in terms of Dice coefficient and IoU metric and demonstrates its potential in biomedical image segmentation tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信