Joseph S. Santarelli, Wenxing Zhou, Carrie Dudley-Tatsu
{"title":"输气管道第三方损害模型","authors":"Joseph S. Santarelli, Wenxing Zhou, Carrie Dudley-Tatsu","doi":"10.1115/IPC2018-78400","DOIUrl":null,"url":null,"abstract":"Third-party damage (TPD) is any damage to underground infrastructure that occurs during work unrelated to the asset. In 2015, there were 10,107 TPD incidents in Canada causing over a billion dollars in estimated damage. TPD is the leading cause of failure for distribution gas pipelines; since distribution pipelines are generally located in areas with high population densities, TPD has significant safety and economic implications. In this study, a probabilistic model is developed to qualify the probability of failure of distribution pipelines due to TPD. The model consists of a fault tree model to quantify the probability of hit given the occurrence of third-party excavation activities and the methodology to evaluate the probability of failure given hit. Fault tree analysis (FTA) is a top down, deductive failure analysis method which uses Boolean logic to combine a series of basic events to analyze the state of a system. Earlier prior research demonstrated the ability of a FTA to quantify the probability of TPD occurring on natural gas transmission pipeline systems. These models allow for a quantitative analysis of preventative measures and, in conjunction with current practices, facilitate a predictive method to plan and optimize resource allocation for damage mitigation and emergency preparedness. The developed TPD model is validated using the data provided from a region in Southwest Ontario. The model will provide distribution companies with a practical tool to identify third-party damage hot spots, develop proactive third-party damage prevention measures, and prioritize damage repair activities using a risk-based approach.","PeriodicalId":164582,"journal":{"name":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","volume":"07 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Third-Party Damage Model for Gas Distribution Pipelines\",\"authors\":\"Joseph S. Santarelli, Wenxing Zhou, Carrie Dudley-Tatsu\",\"doi\":\"10.1115/IPC2018-78400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Third-party damage (TPD) is any damage to underground infrastructure that occurs during work unrelated to the asset. In 2015, there were 10,107 TPD incidents in Canada causing over a billion dollars in estimated damage. TPD is the leading cause of failure for distribution gas pipelines; since distribution pipelines are generally located in areas with high population densities, TPD has significant safety and economic implications. In this study, a probabilistic model is developed to qualify the probability of failure of distribution pipelines due to TPD. The model consists of a fault tree model to quantify the probability of hit given the occurrence of third-party excavation activities and the methodology to evaluate the probability of failure given hit. Fault tree analysis (FTA) is a top down, deductive failure analysis method which uses Boolean logic to combine a series of basic events to analyze the state of a system. Earlier prior research demonstrated the ability of a FTA to quantify the probability of TPD occurring on natural gas transmission pipeline systems. These models allow for a quantitative analysis of preventative measures and, in conjunction with current practices, facilitate a predictive method to plan and optimize resource allocation for damage mitigation and emergency preparedness. The developed TPD model is validated using the data provided from a region in Southwest Ontario. The model will provide distribution companies with a practical tool to identify third-party damage hot spots, develop proactive third-party damage prevention measures, and prioritize damage repair activities using a risk-based approach.\",\"PeriodicalId\":164582,\"journal\":{\"name\":\"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines\",\"volume\":\"07 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IPC2018-78400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IPC2018-78400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Third-Party Damage Model for Gas Distribution Pipelines
Third-party damage (TPD) is any damage to underground infrastructure that occurs during work unrelated to the asset. In 2015, there were 10,107 TPD incidents in Canada causing over a billion dollars in estimated damage. TPD is the leading cause of failure for distribution gas pipelines; since distribution pipelines are generally located in areas with high population densities, TPD has significant safety and economic implications. In this study, a probabilistic model is developed to qualify the probability of failure of distribution pipelines due to TPD. The model consists of a fault tree model to quantify the probability of hit given the occurrence of third-party excavation activities and the methodology to evaluate the probability of failure given hit. Fault tree analysis (FTA) is a top down, deductive failure analysis method which uses Boolean logic to combine a series of basic events to analyze the state of a system. Earlier prior research demonstrated the ability of a FTA to quantify the probability of TPD occurring on natural gas transmission pipeline systems. These models allow for a quantitative analysis of preventative measures and, in conjunction with current practices, facilitate a predictive method to plan and optimize resource allocation for damage mitigation and emergency preparedness. The developed TPD model is validated using the data provided from a region in Southwest Ontario. The model will provide distribution companies with a practical tool to identify third-party damage hot spots, develop proactive third-party damage prevention measures, and prioritize damage repair activities using a risk-based approach.