p - escape:一种模拟人类迁移的高效并行算法

Petros Anastasiadis, Sergiy Gogolenko, Nikela Papadopoulou, M. Lawenda, H. Arabnejad, Ali Jahani, Imran Mahmood, D. Groen
{"title":"p - escape:一种模拟人类迁移的高效并行算法","authors":"Petros Anastasiadis, Sergiy Gogolenko, Nikela Papadopoulou, M. Lawenda, H. Arabnejad, Ali Jahani, Imran Mahmood, D. Groen","doi":"10.1109/IPDPSW52791.2021.00159","DOIUrl":null,"url":null,"abstract":"With over 79 million people forcibly displaced, forced human migration becomes a common issue in the modern world and a serious challenge for the global community. The Flee is a validated agent-based social simulation framework for forecasting the population displacements in the armed conflict settings. In this paper, we present two schemes to parallelize Flee, analyze computational complexity of those schemes, and outline results for benchmarks of our parallel codes with the real-world and synthetic scenarios on four state-of-the-art systems including a new European pre-exascale system, Hawk. On all testbeds, we evidenced high scalability of our codes. It exceeds more than 16,384 cores in our largest benchmark with 100 million agents on Hawk. Parallelization schemes discussed in this work, can be extrapolated to a wide range of ABSS applications with frequent agent movement and lesser impact of direct communications between agents.","PeriodicalId":170832,"journal":{"name":"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"P-Flee: An Efficient Parallel Algorithm for Simulating Human Migration\",\"authors\":\"Petros Anastasiadis, Sergiy Gogolenko, Nikela Papadopoulou, M. Lawenda, H. Arabnejad, Ali Jahani, Imran Mahmood, D. Groen\",\"doi\":\"10.1109/IPDPSW52791.2021.00159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With over 79 million people forcibly displaced, forced human migration becomes a common issue in the modern world and a serious challenge for the global community. The Flee is a validated agent-based social simulation framework for forecasting the population displacements in the armed conflict settings. In this paper, we present two schemes to parallelize Flee, analyze computational complexity of those schemes, and outline results for benchmarks of our parallel codes with the real-world and synthetic scenarios on four state-of-the-art systems including a new European pre-exascale system, Hawk. On all testbeds, we evidenced high scalability of our codes. It exceeds more than 16,384 cores in our largest benchmark with 100 million agents on Hawk. Parallelization schemes discussed in this work, can be extrapolated to a wide range of ABSS applications with frequent agent movement and lesser impact of direct communications between agents.\",\"PeriodicalId\":170832,\"journal\":{\"name\":\"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW52791.2021.00159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW52791.2021.00159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于有7900多万人被迫流离失所,被迫移徙已成为现代世界的一个普遍问题,也是国际社会面临的一个严重挑战。“逃离”是一个经过验证的基于主体的社会模拟框架,用于预测武装冲突环境下的人口流离失所。在本文中,我们提出了两种并行化escape的方案,分析了这些方案的计算复杂性,并概述了我们的并行代码在四个最先进的系统(包括新的欧洲pre-exascale系统Hawk)上的现实世界和综合场景的基准测试结果。在所有的测试平台上,我们证明了代码的高可伸缩性。它超过了我们在Hawk上拥有1亿个代理的最大基准中的16,384个核心。本工作中讨论的并行化方案可以外推到广泛的ABSS应用程序中,这些应用程序具有频繁的代理移动和代理之间直接通信的较小影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
P-Flee: An Efficient Parallel Algorithm for Simulating Human Migration
With over 79 million people forcibly displaced, forced human migration becomes a common issue in the modern world and a serious challenge for the global community. The Flee is a validated agent-based social simulation framework for forecasting the population displacements in the armed conflict settings. In this paper, we present two schemes to parallelize Flee, analyze computational complexity of those schemes, and outline results for benchmarks of our parallel codes with the real-world and synthetic scenarios on four state-of-the-art systems including a new European pre-exascale system, Hawk. On all testbeds, we evidenced high scalability of our codes. It exceeds more than 16,384 cores in our largest benchmark with 100 million agents on Hawk. Parallelization schemes discussed in this work, can be extrapolated to a wide range of ABSS applications with frequent agent movement and lesser impact of direct communications between agents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信