H. Matsumura, Yohei Yagishita, I. Soga, K. Oishi, Y. Kawano, Y. Nakasha, T. Iwai
{"title":"采用55纳米CMOS技术的正交PPM解调的80 ghz脉冲无线电接收机","authors":"H. Matsumura, Yohei Yagishita, I. Soga, K. Oishi, Y. Kawano, Y. Nakasha, T. Iwai","doi":"10.23919/EUMIC.2017.8230659","DOIUrl":null,"url":null,"abstract":"This paper presents a quadrature pulse-position modulation (Q-PPM) impulse radio (IR) system, and its novel transceiver architecture for E-band wireless communications. In the Q-PPM IR system, the wavelet of the transmitted signal is time-shifted by multiples of 3 ps from the periodic base position. This paper focuses on the receiver architecture for demodulation of the Q-PPM IR signal. The principle and a detailed analysis of the demodulation scheme are described. The integrated receiver chip was developed in 55-nm CMOS technology. It includes all circuit blocks based on the proposed demodulation architecture, which consists of an in-phase/quadrature (IQ) demodulator, a symbol clock recovery circuit, and a local impulse generator. A measured conversion gain of about 4 dB in the 81–86-GHz frequency band is achieved.","PeriodicalId":120932,"journal":{"name":"2017 12th European Microwave Integrated Circuits Conference (EuMIC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"80-GHz impulse radio receiver with quadrature PPM demodulation in 55-nm CMOS technology\",\"authors\":\"H. Matsumura, Yohei Yagishita, I. Soga, K. Oishi, Y. Kawano, Y. Nakasha, T. Iwai\",\"doi\":\"10.23919/EUMIC.2017.8230659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a quadrature pulse-position modulation (Q-PPM) impulse radio (IR) system, and its novel transceiver architecture for E-band wireless communications. In the Q-PPM IR system, the wavelet of the transmitted signal is time-shifted by multiples of 3 ps from the periodic base position. This paper focuses on the receiver architecture for demodulation of the Q-PPM IR signal. The principle and a detailed analysis of the demodulation scheme are described. The integrated receiver chip was developed in 55-nm CMOS technology. It includes all circuit blocks based on the proposed demodulation architecture, which consists of an in-phase/quadrature (IQ) demodulator, a symbol clock recovery circuit, and a local impulse generator. A measured conversion gain of about 4 dB in the 81–86-GHz frequency band is achieved.\",\"PeriodicalId\":120932,\"journal\":{\"name\":\"2017 12th European Microwave Integrated Circuits Conference (EuMIC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th European Microwave Integrated Circuits Conference (EuMIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUMIC.2017.8230659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th European Microwave Integrated Circuits Conference (EuMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUMIC.2017.8230659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
80-GHz impulse radio receiver with quadrature PPM demodulation in 55-nm CMOS technology
This paper presents a quadrature pulse-position modulation (Q-PPM) impulse radio (IR) system, and its novel transceiver architecture for E-band wireless communications. In the Q-PPM IR system, the wavelet of the transmitted signal is time-shifted by multiples of 3 ps from the periodic base position. This paper focuses on the receiver architecture for demodulation of the Q-PPM IR signal. The principle and a detailed analysis of the demodulation scheme are described. The integrated receiver chip was developed in 55-nm CMOS technology. It includes all circuit blocks based on the proposed demodulation architecture, which consists of an in-phase/quadrature (IQ) demodulator, a symbol clock recovery circuit, and a local impulse generator. A measured conversion gain of about 4 dB in the 81–86-GHz frequency band is achieved.