一种有效的网络课程辍学率预测模型

S. Narayanasamy, Atilla Elçi
{"title":"一种有效的网络课程辍学率预测模型","authors":"S. Narayanasamy, Atilla Elçi","doi":"10.4018/IJDET.2020100106","DOIUrl":null,"url":null,"abstract":"Due to tremendous reception on digital learning platforms, many online users tend to register for online courses in MOOC offered by many prestigious universities all over the world and gain a lot on cutting edge technologies in niche courses. As the reception of online courses is increasing on one side, there have been huge dropouts of participants in the online courses causing serious problems for the course owners and other MOOC administrators. Hence, it is deemed necessary to find out the root causes of course dropouts and need to prepare a workable solution to prevent that outcome in the future. In this connection, the authors made use of three machine learning algorithms such as support vector machine, random forest, and conditional random fields. The huge samples of datasets were downloaded from the Open University of China, that is, almost 7K student profiles were extracted for the empirical analysis. The datasets were loaded into a confusion matrix and analyzed for the accuracy, precision, recall, and f-score of the model.","PeriodicalId":298910,"journal":{"name":"Int. J. Distance Educ. Technol.","volume":"340 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An Effective Prediction Model for Online Course Dropout Rate\",\"authors\":\"S. Narayanasamy, Atilla Elçi\",\"doi\":\"10.4018/IJDET.2020100106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to tremendous reception on digital learning platforms, many online users tend to register for online courses in MOOC offered by many prestigious universities all over the world and gain a lot on cutting edge technologies in niche courses. As the reception of online courses is increasing on one side, there have been huge dropouts of participants in the online courses causing serious problems for the course owners and other MOOC administrators. Hence, it is deemed necessary to find out the root causes of course dropouts and need to prepare a workable solution to prevent that outcome in the future. In this connection, the authors made use of three machine learning algorithms such as support vector machine, random forest, and conditional random fields. The huge samples of datasets were downloaded from the Open University of China, that is, almost 7K student profiles were extracted for the empirical analysis. The datasets were loaded into a confusion matrix and analyzed for the accuracy, precision, recall, and f-score of the model.\",\"PeriodicalId\":298910,\"journal\":{\"name\":\"Int. J. Distance Educ. Technol.\",\"volume\":\"340 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Distance Educ. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJDET.2020100106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Distance Educ. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJDET.2020100106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

由于在数字学习平台上的巨大反响,许多在线用户倾向于注册世界上许多知名大学提供的MOOC在线课程,并在小众课程中获得许多前沿技术。一方面,随着在线课程的接受程度越来越高,在线课程的参与者大量退出,给课程所有者和其他MOOC管理者带来了严重的问题。因此,有必要找出当然退学的根本原因,并需要准备一个可行的解决方案,以防止未来出现这种结果。在这方面,作者使用了三种机器学习算法,如支持向量机,随机森林和条件随机场。从中国开放大学下载了庞大的数据集样本,即提取了近7K的学生资料进行实证分析。将数据集加载到混淆矩阵中,并对模型的准确性、精密度、召回率和f分数进行分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Effective Prediction Model for Online Course Dropout Rate
Due to tremendous reception on digital learning platforms, many online users tend to register for online courses in MOOC offered by many prestigious universities all over the world and gain a lot on cutting edge technologies in niche courses. As the reception of online courses is increasing on one side, there have been huge dropouts of participants in the online courses causing serious problems for the course owners and other MOOC administrators. Hence, it is deemed necessary to find out the root causes of course dropouts and need to prepare a workable solution to prevent that outcome in the future. In this connection, the authors made use of three machine learning algorithms such as support vector machine, random forest, and conditional random fields. The huge samples of datasets were downloaded from the Open University of China, that is, almost 7K student profiles were extracted for the empirical analysis. The datasets were loaded into a confusion matrix and analyzed for the accuracy, precision, recall, and f-score of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信