学生滤波器对信号进行时频分析与合成

Bogdan Semenov, I. Shelevytsky
{"title":"学生滤波器对信号进行时频分析与合成","authors":"Bogdan Semenov, I. Shelevytsky","doi":"10.1109/SPS.2015.7168293","DOIUrl":null,"url":null,"abstract":"Non-linear filter with studentized coefficients of time-frequency decomposition and signal reconstruction is described. The main feature of time-frequency decomposition is least squares estimation of spline fragments of different scales. Filter performs selection of statistically significant components of time-frequency decomposition taking into account local variance of residuals. The main advantage is that it filters fragments of white noise from the signal.","PeriodicalId":193902,"journal":{"name":"2015 Signal Processing Symposium (SPSympo)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studentized filter of time-frequency analysis and synthesis of the signals\",\"authors\":\"Bogdan Semenov, I. Shelevytsky\",\"doi\":\"10.1109/SPS.2015.7168293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-linear filter with studentized coefficients of time-frequency decomposition and signal reconstruction is described. The main feature of time-frequency decomposition is least squares estimation of spline fragments of different scales. Filter performs selection of statistically significant components of time-frequency decomposition taking into account local variance of residuals. The main advantage is that it filters fragments of white noise from the signal.\",\"PeriodicalId\":193902,\"journal\":{\"name\":\"2015 Signal Processing Symposium (SPSympo)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Signal Processing Symposium (SPSympo)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPS.2015.7168293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Signal Processing Symposium (SPSympo)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPS.2015.7168293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

描述了具有时频分解系数和信号重构系数的非线性滤波器。时频分解的主要特点是对不同尺度的样条片段进行最小二乘估计。滤波器考虑残差的局部方差,选择时频分解中具有统计意义的分量。它的主要优点是能过滤掉信号中的白噪声碎片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Studentized filter of time-frequency analysis and synthesis of the signals
Non-linear filter with studentized coefficients of time-frequency decomposition and signal reconstruction is described. The main feature of time-frequency decomposition is least squares estimation of spline fragments of different scales. Filter performs selection of statistically significant components of time-frequency decomposition taking into account local variance of residuals. The main advantage is that it filters fragments of white noise from the signal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信