{"title":"基于时空图卷积网络的动作识别骨架分割框架","authors":"Motasem S. Alsawadi, Miguel Rio","doi":"10.1109/BioSMART54244.2021.9677634","DOIUrl":null,"url":null,"abstract":"There has been a dramatic increase in the volume of videos and their related content uploaded to the internet. Accordingly, the need for efficient algorithms to analyse this vast amount of data has attracted significant research interest. This work aims to recognize activities of daily living using the ST-GCN model, providing a comparison between four different partitioning strategies: spatial configuration partitioning, full distance split, connection split, and index split. To achieve this aim, we present the first implementation of the ST-GCN framework upon the HMDB-51 dataset. Additionally, we show that our proposals have achieved the highest accuracy performance on the UCF-101 dataset using the ST-GCN framework than the state-of-the-art approach.","PeriodicalId":286026,"journal":{"name":"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Skeleton-Split Framework using Spatial Temporal Graph Convolutional Networks for Action Recognition\",\"authors\":\"Motasem S. Alsawadi, Miguel Rio\",\"doi\":\"10.1109/BioSMART54244.2021.9677634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been a dramatic increase in the volume of videos and their related content uploaded to the internet. Accordingly, the need for efficient algorithms to analyse this vast amount of data has attracted significant research interest. This work aims to recognize activities of daily living using the ST-GCN model, providing a comparison between four different partitioning strategies: spatial configuration partitioning, full distance split, connection split, and index split. To achieve this aim, we present the first implementation of the ST-GCN framework upon the HMDB-51 dataset. Additionally, we show that our proposals have achieved the highest accuracy performance on the UCF-101 dataset using the ST-GCN framework than the state-of-the-art approach.\",\"PeriodicalId\":286026,\"journal\":{\"name\":\"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BioSMART54244.2021.9677634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioSMART54244.2021.9677634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Skeleton-Split Framework using Spatial Temporal Graph Convolutional Networks for Action Recognition
There has been a dramatic increase in the volume of videos and their related content uploaded to the internet. Accordingly, the need for efficient algorithms to analyse this vast amount of data has attracted significant research interest. This work aims to recognize activities of daily living using the ST-GCN model, providing a comparison between four different partitioning strategies: spatial configuration partitioning, full distance split, connection split, and index split. To achieve this aim, we present the first implementation of the ST-GCN framework upon the HMDB-51 dataset. Additionally, we show that our proposals have achieved the highest accuracy performance on the UCF-101 dataset using the ST-GCN framework than the state-of-the-art approach.