用于深度神经网络内存模拟计算的时间复用Flash ADC

A. Boni, Francesco Frattini, Michele Caselli
{"title":"用于深度神经网络内存模拟计算的时间复用Flash ADC","authors":"A. Boni, Francesco Frattini, Michele Caselli","doi":"10.1109/icecs53924.2021.9665494","DOIUrl":null,"url":null,"abstract":"This paper presents a Flash A/D converter to be integrated at the periphery of mixed-signal computing memories for convolutional neural networks. We investigate the feasibility of a true time-multiplexing, which allows to greatly relax the ADC requirements of area and aspect ratio, without sacrificing the data throughput of the memory array. The ADC, based on a strong-arm latched comparator combining built-in reference generation, body bias, and offset calibration, exhibits 29.8-dB SNDR at 3.2 GS/s with 1.5-mW power consumption, and a silicon area of $900\\ \\mu\\mathrm{m}^{2}$. Integrated with the memory array, the converter enables up to 32-to-1 column multiplexing with 20 ns of A/D conversion latency.","PeriodicalId":448558,"journal":{"name":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Time-Multiplexed Flash ADC for Deep Neural Network Analog in-Memory Computing\",\"authors\":\"A. Boni, Francesco Frattini, Michele Caselli\",\"doi\":\"10.1109/icecs53924.2021.9665494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a Flash A/D converter to be integrated at the periphery of mixed-signal computing memories for convolutional neural networks. We investigate the feasibility of a true time-multiplexing, which allows to greatly relax the ADC requirements of area and aspect ratio, without sacrificing the data throughput of the memory array. The ADC, based on a strong-arm latched comparator combining built-in reference generation, body bias, and offset calibration, exhibits 29.8-dB SNDR at 3.2 GS/s with 1.5-mW power consumption, and a silicon area of $900\\\\ \\\\mu\\\\mathrm{m}^{2}$. Integrated with the memory array, the converter enables up to 32-to-1 column multiplexing with 20 ns of A/D conversion latency.\",\"PeriodicalId\":448558,\"journal\":{\"name\":\"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icecs53924.2021.9665494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icecs53924.2021.9665494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种集成在卷积神经网络混合信号计算存储器外围的Flash a /D转换器。我们研究了一种真正的时间复用的可行性,它可以大大放宽ADC对面积和纵横比的要求,而不会牺牲存储阵列的数据吞吐量。该ADC基于强臂锁存比较器,结合内置基准生成、体偏置和偏置校准,在3.2 GS/s下具有29.8 db SNDR,功耗为1.5 mw,硅面积为$900\ \mu\math {m}^{2}$。该转换器与存储阵列集成,可实现32对1列复用,A/D转换延迟为20ns。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-Multiplexed Flash ADC for Deep Neural Network Analog in-Memory Computing
This paper presents a Flash A/D converter to be integrated at the periphery of mixed-signal computing memories for convolutional neural networks. We investigate the feasibility of a true time-multiplexing, which allows to greatly relax the ADC requirements of area and aspect ratio, without sacrificing the data throughput of the memory array. The ADC, based on a strong-arm latched comparator combining built-in reference generation, body bias, and offset calibration, exhibits 29.8-dB SNDR at 3.2 GS/s with 1.5-mW power consumption, and a silicon area of $900\ \mu\mathrm{m}^{2}$. Integrated with the memory array, the converter enables up to 32-to-1 column multiplexing with 20 ns of A/D conversion latency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信