非线性体光子映射

D. Gutierrez, A. Muñoz, Oscar Anson, F. Serón
{"title":"非线性体光子映射","authors":"D. Gutierrez, A. Muñoz, Oscar Anson, F. Serón","doi":"10.2312/EGWR/EGSR05/291-300","DOIUrl":null,"url":null,"abstract":"This paper describes a novel extension of the photon mapping algorithm, capable of handling both volume multiple inelastic scattering and curved light paths simultaneously. The extension is based on the Full Radiative Transfer Equation (FRTE) and Fermat's law, and yields physically accurate, high-dynamic data than can be used for image generation or for other simulation purposes, such as driving simulators, underwater vision or lighting studies in architecture. Photons are traced into the participating medium with a varying index of refraction, and their curved trajectories followed (curved paths are the cause of certain atmospheric effects such as mirages or rippling desert images). Every time a photon is absorbed, a Russian roulette algorithm based on the quantum efficiency of the medium determines whether the inelastic scattering event takes place (causing volume fluorescence). The simulation of both underwater and atmospheric effects is shown, providing a global illumination solution without the restrictions of previous approaches.","PeriodicalId":363391,"journal":{"name":"Eurographics Symposium on Rendering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Non-linear volume photon mapping\",\"authors\":\"D. Gutierrez, A. Muñoz, Oscar Anson, F. Serón\",\"doi\":\"10.2312/EGWR/EGSR05/291-300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a novel extension of the photon mapping algorithm, capable of handling both volume multiple inelastic scattering and curved light paths simultaneously. The extension is based on the Full Radiative Transfer Equation (FRTE) and Fermat's law, and yields physically accurate, high-dynamic data than can be used for image generation or for other simulation purposes, such as driving simulators, underwater vision or lighting studies in architecture. Photons are traced into the participating medium with a varying index of refraction, and their curved trajectories followed (curved paths are the cause of certain atmospheric effects such as mirages or rippling desert images). Every time a photon is absorbed, a Russian roulette algorithm based on the quantum efficiency of the medium determines whether the inelastic scattering event takes place (causing volume fluorescence). The simulation of both underwater and atmospheric effects is shown, providing a global illumination solution without the restrictions of previous approaches.\",\"PeriodicalId\":363391,\"journal\":{\"name\":\"Eurographics Symposium on Rendering\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurographics Symposium on Rendering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/EGWR/EGSR05/291-300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Symposium on Rendering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/EGWR/EGSR05/291-300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

本文描述了一种新的光子映射算法的扩展,能够同时处理体多重非弹性散射和弯曲光路。该扩展基于全辐射传递方程(FRTE)和费马定律,并产生物理上准确的高动态数据,可用于图像生成或其他模拟目的,如驾驶模拟器,水下视觉或建筑中的照明研究。光子以不同的折射率被追踪到参与的介质中,并遵循它们的弯曲轨迹(弯曲路径是某些大气效应的原因,如海市蜃楼或涟漪般的沙漠图像)。每次光子被吸收时,基于介质量子效率的俄罗斯轮盘赌算法决定是否发生非弹性散射事件(引起体积荧光)。水下和大气效果的模拟显示,提供了一个全局照明解决方案,而不受以前方法的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-linear volume photon mapping
This paper describes a novel extension of the photon mapping algorithm, capable of handling both volume multiple inelastic scattering and curved light paths simultaneously. The extension is based on the Full Radiative Transfer Equation (FRTE) and Fermat's law, and yields physically accurate, high-dynamic data than can be used for image generation or for other simulation purposes, such as driving simulators, underwater vision or lighting studies in architecture. Photons are traced into the participating medium with a varying index of refraction, and their curved trajectories followed (curved paths are the cause of certain atmospheric effects such as mirages or rippling desert images). Every time a photon is absorbed, a Russian roulette algorithm based on the quantum efficiency of the medium determines whether the inelastic scattering event takes place (causing volume fluorescence). The simulation of both underwater and atmospheric effects is shown, providing a global illumination solution without the restrictions of previous approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信