基于散射变换的电力负荷分类特征提取与选择

E. L. Aguiar, A. Lazzaretti, D. Pipa
{"title":"基于散射变换的电力负荷分类特征提取与选择","authors":"E. L. Aguiar, A. Lazzaretti, D. Pipa","doi":"10.21528/lnlm-vol21-no1-art2","DOIUrl":null,"url":null,"abstract":"The Scattering Transform (ST) presents itself as an alternative approach to the classic methods that involve neural networks and deep learning techniques for the feature extraction and classification of electrical signals. Among its main advantages, one can emphasize that the coefficients of the ST are determined analytically and do not need to be learned, as typically performed in Convolutional Neural Networks (CNNs). Additionally, ST has time-shifting and small time-warping invariance, which reduces the need for precise temporal localization (detection) for subsequent classification. This paper originally proposes six feature extraction and selection methods applied to classification of Non-intrusive Load Monitoring (NILM) high-frequency signals. We visually analyze the separability among classes for the proposed Feature Extractors and validate the performance of the proposed methods varying several parameters for ST calculation, such as signal length, number of examples, and sampling frequency. The results outperform other state-of-the-art feature extraction techniques, reaching up to 100% of FScore for a publicly available dataset, demonstrating the feasibility and promising aspects of the ST for NILM problems.","PeriodicalId":386768,"journal":{"name":"Learning and Nonlinear Models","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Features Extraction and Selection with the Scattering Transform for Electrical Load Classification\",\"authors\":\"E. L. Aguiar, A. Lazzaretti, D. Pipa\",\"doi\":\"10.21528/lnlm-vol21-no1-art2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Scattering Transform (ST) presents itself as an alternative approach to the classic methods that involve neural networks and deep learning techniques for the feature extraction and classification of electrical signals. Among its main advantages, one can emphasize that the coefficients of the ST are determined analytically and do not need to be learned, as typically performed in Convolutional Neural Networks (CNNs). Additionally, ST has time-shifting and small time-warping invariance, which reduces the need for precise temporal localization (detection) for subsequent classification. This paper originally proposes six feature extraction and selection methods applied to classification of Non-intrusive Load Monitoring (NILM) high-frequency signals. We visually analyze the separability among classes for the proposed Feature Extractors and validate the performance of the proposed methods varying several parameters for ST calculation, such as signal length, number of examples, and sampling frequency. The results outperform other state-of-the-art feature extraction techniques, reaching up to 100% of FScore for a publicly available dataset, demonstrating the feasibility and promising aspects of the ST for NILM problems.\",\"PeriodicalId\":386768,\"journal\":{\"name\":\"Learning and Nonlinear Models\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Learning and Nonlinear Models\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21528/lnlm-vol21-no1-art2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning and Nonlinear Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21528/lnlm-vol21-no1-art2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

散射变换(ST)是一种经典方法的替代方法,该方法涉及神经网络和深度学习技术,用于电信号的特征提取和分类。在其主要优点中,人们可以强调ST的系数是解析确定的,不需要学习,就像卷积神经网络(cnn)中通常执行的那样。此外,ST具有时移和小的时间翘曲不变性,这减少了后续分类对精确时间定位(检测)的需求。提出了六种用于非侵入式负荷监测高频信号分类的特征提取与选择方法。我们可视化地分析了所提出的特征提取器的类之间的可分性,并验证了所提出的方法在ST计算中的几个参数(如信号长度、样本数量和采样频率)的性能。结果优于其他最先进的特征提取技术,在公开可用的数据集上达到100%的FScore,证明了ST在NILM问题上的可行性和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Features Extraction and Selection with the Scattering Transform for Electrical Load Classification
The Scattering Transform (ST) presents itself as an alternative approach to the classic methods that involve neural networks and deep learning techniques for the feature extraction and classification of electrical signals. Among its main advantages, one can emphasize that the coefficients of the ST are determined analytically and do not need to be learned, as typically performed in Convolutional Neural Networks (CNNs). Additionally, ST has time-shifting and small time-warping invariance, which reduces the need for precise temporal localization (detection) for subsequent classification. This paper originally proposes six feature extraction and selection methods applied to classification of Non-intrusive Load Monitoring (NILM) high-frequency signals. We visually analyze the separability among classes for the proposed Feature Extractors and validate the performance of the proposed methods varying several parameters for ST calculation, such as signal length, number of examples, and sampling frequency. The results outperform other state-of-the-art feature extraction techniques, reaching up to 100% of FScore for a publicly available dataset, demonstrating the feasibility and promising aspects of the ST for NILM problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信