基于mve的可解释性强化学习框架提高雾计算中应用放置体验质量

Bhargavi Krishnamurthy, S. Shiva, Saikat Das, Ph.D.
{"title":"基于mve的可解释性强化学习框架提高雾计算中应用放置体验质量","authors":"Bhargavi Krishnamurthy, S. Shiva, Saikat Das, Ph.D.","doi":"10.1109/aiiot54504.2022.9817331","DOIUrl":null,"url":null,"abstract":"Fog computing can process big data generated by the IoT (IoT) architectures. The hierarchical, heterogeneous and distributed form of fog computing makes the application placement a challenging task. IoT applications are time-sensitive, and their placement decision is dependent on the user's Quality of Experience (QoE). This paper proposes an explainable Model Value Evaluation based Reinforcement Learning (MVERL) framework for placing applications among appropriate fog nodes. The quality of the application placement policies is good in terms of metrics related to quality like correctness, model relevance, $\\in$-differential privacy, and robustness. The performance results of the proposed MVERL are evaluated considering fog nodes with both limited and unlimited processors. The simulation found that the proposed MVERL outperforms existing works concerning a few performance metrics.","PeriodicalId":409264,"journal":{"name":"2022 IEEE World AI IoT Congress (AIIoT)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MVE-based Reinforcement Learning Framework with Explainability for improving Quality of Experience of Application Placement in Fog Computing\",\"authors\":\"Bhargavi Krishnamurthy, S. Shiva, Saikat Das, Ph.D.\",\"doi\":\"10.1109/aiiot54504.2022.9817331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fog computing can process big data generated by the IoT (IoT) architectures. The hierarchical, heterogeneous and distributed form of fog computing makes the application placement a challenging task. IoT applications are time-sensitive, and their placement decision is dependent on the user's Quality of Experience (QoE). This paper proposes an explainable Model Value Evaluation based Reinforcement Learning (MVERL) framework for placing applications among appropriate fog nodes. The quality of the application placement policies is good in terms of metrics related to quality like correctness, model relevance, $\\\\in$-differential privacy, and robustness. The performance results of the proposed MVERL are evaluated considering fog nodes with both limited and unlimited processors. The simulation found that the proposed MVERL outperforms existing works concerning a few performance metrics.\",\"PeriodicalId\":409264,\"journal\":{\"name\":\"2022 IEEE World AI IoT Congress (AIIoT)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE World AI IoT Congress (AIIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/aiiot54504.2022.9817331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE World AI IoT Congress (AIIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aiiot54504.2022.9817331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

雾计算可以处理物联网(IoT)架构产生的大数据。雾计算的分层、异构和分布式形式使得应用程序的放置成为一项具有挑战性的任务。物联网应用对时间敏感,它们的放置决定取决于用户的体验质量(QoE)。本文提出了一个可解释的基于模型价值评估的强化学习(MVERL)框架,用于将应用程序放置在适当的雾节点中。应用程序放置策略的质量在与质量相关的度量(如正确性、模型相关性、差分隐私和健壮性)方面是好的。考虑具有有限处理器和无限处理器的雾节点,对所提出的MVERL的性能结果进行了评估。仿真结果表明,所提出的MVERL在一些性能指标上优于现有的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MVE-based Reinforcement Learning Framework with Explainability for improving Quality of Experience of Application Placement in Fog Computing
Fog computing can process big data generated by the IoT (IoT) architectures. The hierarchical, heterogeneous and distributed form of fog computing makes the application placement a challenging task. IoT applications are time-sensitive, and their placement decision is dependent on the user's Quality of Experience (QoE). This paper proposes an explainable Model Value Evaluation based Reinforcement Learning (MVERL) framework for placing applications among appropriate fog nodes. The quality of the application placement policies is good in terms of metrics related to quality like correctness, model relevance, $\in$-differential privacy, and robustness. The performance results of the proposed MVERL are evaluated considering fog nodes with both limited and unlimited processors. The simulation found that the proposed MVERL outperforms existing works concerning a few performance metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信