基于深度学习的图像分割方法综述

Nabeel N. Ali, N. Kako, A. Abdi
{"title":"基于深度学习的图像分割方法综述","authors":"Nabeel N. Ali, N. Kako, A. Abdi","doi":"10.1109/ICOASE56293.2022.10075607","DOIUrl":null,"url":null,"abstract":"In recent years, the machine learning field has been inundated with a variety of deep learning methods. Different deep learning model types, including recurrent neural networks (RNNs), convolutional neural networks (CNNs), adversarial neural networks (ANNs), and autoencoders, are successfully tackling challenging computer vision problems including image detection and segmentation in an unconstrained environment. Although image segmentation has received a lot of interest, there have been several new deep learning methods discovered with regard to object detection and recognition. An academic review of deep learning image segmentation methods is presented in this article. In this study, the major goal is to offer a sensible comprehension of the basic approaches that have already made a substantial contribution to the domain of image segmentation throughout the years. The article describes the existing state of image segmentation, and goes on to make the argument that deep learning has revolutionized this field. Afterwards, segmentation algorithms have been scientifically classified and optimized, each with their own special contribution. With a variety of informative narratives, the reader may be able to understand the internal workings of these processes more quickly.","PeriodicalId":297211,"journal":{"name":"2022 4th International Conference on Advanced Science and Engineering (ICOASE)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review on Image Segmentation Methods Using Deep Learning\",\"authors\":\"Nabeel N. Ali, N. Kako, A. Abdi\",\"doi\":\"10.1109/ICOASE56293.2022.10075607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the machine learning field has been inundated with a variety of deep learning methods. Different deep learning model types, including recurrent neural networks (RNNs), convolutional neural networks (CNNs), adversarial neural networks (ANNs), and autoencoders, are successfully tackling challenging computer vision problems including image detection and segmentation in an unconstrained environment. Although image segmentation has received a lot of interest, there have been several new deep learning methods discovered with regard to object detection and recognition. An academic review of deep learning image segmentation methods is presented in this article. In this study, the major goal is to offer a sensible comprehension of the basic approaches that have already made a substantial contribution to the domain of image segmentation throughout the years. The article describes the existing state of image segmentation, and goes on to make the argument that deep learning has revolutionized this field. Afterwards, segmentation algorithms have been scientifically classified and optimized, each with their own special contribution. With a variety of informative narratives, the reader may be able to understand the internal workings of these processes more quickly.\",\"PeriodicalId\":297211,\"journal\":{\"name\":\"2022 4th International Conference on Advanced Science and Engineering (ICOASE)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Advanced Science and Engineering (ICOASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOASE56293.2022.10075607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Advanced Science and Engineering (ICOASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOASE56293.2022.10075607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,机器学习领域充斥着各种各样的深度学习方法。不同的深度学习模型类型,包括循环神经网络(rnn)、卷积神经网络(cnn)、对抗神经网络(ann)和自动编码器,正在成功地解决具有挑战性的计算机视觉问题,包括在不受约束的环境中进行图像检测和分割。尽管图像分割受到了很多关注,但在物体检测和识别方面,已经发现了几种新的深度学习方法。本文介绍了深度学习图像分割方法的学术综述。在本研究中,主要目标是对多年来已经对图像分割领域做出重大贡献的基本方法提供合理的理解。本文描述了图像分割的现有状态,并继续提出深度学习已经彻底改变了这一领域的论点。之后,对分割算法进行了科学的分类和优化,每一种算法都有自己独特的贡献。有了各种各样的信息叙述,读者可能能够更快地理解这些过程的内部运作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review on Image Segmentation Methods Using Deep Learning
In recent years, the machine learning field has been inundated with a variety of deep learning methods. Different deep learning model types, including recurrent neural networks (RNNs), convolutional neural networks (CNNs), adversarial neural networks (ANNs), and autoencoders, are successfully tackling challenging computer vision problems including image detection and segmentation in an unconstrained environment. Although image segmentation has received a lot of interest, there have been several new deep learning methods discovered with regard to object detection and recognition. An academic review of deep learning image segmentation methods is presented in this article. In this study, the major goal is to offer a sensible comprehension of the basic approaches that have already made a substantial contribution to the domain of image segmentation throughout the years. The article describes the existing state of image segmentation, and goes on to make the argument that deep learning has revolutionized this field. Afterwards, segmentation algorithms have been scientifically classified and optimized, each with their own special contribution. With a variety of informative narratives, the reader may be able to understand the internal workings of these processes more quickly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信