移动机器人全局定位的进化滤波算法

L. Moreno, M. L. Muoz, S. Garrido, F. Martín
{"title":"移动机器人全局定位的进化滤波算法","authors":"L. Moreno, M. L. Muoz, S. Garrido, F. Martín","doi":"10.1109/WISP.2007.4447539","DOIUrl":null,"url":null,"abstract":"Mobile robot global localization aims to determine the robot's pose in a known environment in absence of initial robot's pose information. This article presents an evolutive localization algorithm known as Evolutive Localization filter (ELF). Based on evolutionary computation concepts, the proposed algorithm search stochastically along the state space the best robot's pose estimate. The set of pose solutions (the population) represents the most likely areas according the perception and motion information received. The population evolves by using the observation and motion errors derived from the comparison between observed and predicted data obtained from the probabilistic perception and motion model. The resulting global localization module has been tested in a mobile robot equipped with a laser range finder. Experiments demonstrate the effectiveness, robustness and computational efficiency of the proposed approach.","PeriodicalId":164902,"journal":{"name":"2007 IEEE International Symposium on Intelligent Signal Processing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Evolutionary Filter for Mobile Robot Global Localization\",\"authors\":\"L. Moreno, M. L. Muoz, S. Garrido, F. Martín\",\"doi\":\"10.1109/WISP.2007.4447539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile robot global localization aims to determine the robot's pose in a known environment in absence of initial robot's pose information. This article presents an evolutive localization algorithm known as Evolutive Localization filter (ELF). Based on evolutionary computation concepts, the proposed algorithm search stochastically along the state space the best robot's pose estimate. The set of pose solutions (the population) represents the most likely areas according the perception and motion information received. The population evolves by using the observation and motion errors derived from the comparison between observed and predicted data obtained from the probabilistic perception and motion model. The resulting global localization module has been tested in a mobile robot equipped with a laser range finder. Experiments demonstrate the effectiveness, robustness and computational efficiency of the proposed approach.\",\"PeriodicalId\":164902,\"journal\":{\"name\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISP.2007.4447539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Intelligent Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISP.2007.4447539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

移动机器人全局定位的目的是在没有初始机器人姿态信息的情况下,确定机器人在已知环境中的姿态。本文提出了一种进化定位算法——进化定位滤波器(ELF)。该算法基于进化计算概念,沿状态空间随机搜索最佳机器人姿态估计值。姿态解的集合(总体)根据接收到的感知和运动信息表示最有可能的区域。种群的进化是通过概率感知和运动模型中观测和预测数据的比较得出的观测和运动误差。由此产生的全球定位模块已经在配备激光测距仪的移动机器人中进行了测试。实验证明了该方法的有效性、鲁棒性和计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary Filter for Mobile Robot Global Localization
Mobile robot global localization aims to determine the robot's pose in a known environment in absence of initial robot's pose information. This article presents an evolutive localization algorithm known as Evolutive Localization filter (ELF). Based on evolutionary computation concepts, the proposed algorithm search stochastically along the state space the best robot's pose estimate. The set of pose solutions (the population) represents the most likely areas according the perception and motion information received. The population evolves by using the observation and motion errors derived from the comparison between observed and predicted data obtained from the probabilistic perception and motion model. The resulting global localization module has been tested in a mobile robot equipped with a laser range finder. Experiments demonstrate the effectiveness, robustness and computational efficiency of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信