手写体数字识别用PCA的直方图梯度定向

Wu-Sheng Lu
{"title":"手写体数字识别用PCA的直方图梯度定向","authors":"Wu-Sheng Lu","doi":"10.1109/PACRIM.2017.8121906","DOIUrl":null,"url":null,"abstract":"This paper presents a multiclass classifier based on principal component analysis (PCA) of histogram of oriented gradient (HOG) for accurate and fast recognition of handwritten digits. HOG is known as an effective feature descriptor for computer vision and image processing, and PCA has shown its ability for fast multiclass recorgenition. By combining PCA with HOG, the PCA-of-HOG based classifier is developed. The proposed algorithm was applied to the MNIST database of handwritten digits to demonstrate its performance in comparison with classifiers based on PCA of raw input data.","PeriodicalId":308087,"journal":{"name":"2017 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Handwritten digits recognition using PCA of histogram of oriented gradient\",\"authors\":\"Wu-Sheng Lu\",\"doi\":\"10.1109/PACRIM.2017.8121906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a multiclass classifier based on principal component analysis (PCA) of histogram of oriented gradient (HOG) for accurate and fast recognition of handwritten digits. HOG is known as an effective feature descriptor for computer vision and image processing, and PCA has shown its ability for fast multiclass recorgenition. By combining PCA with HOG, the PCA-of-HOG based classifier is developed. The proposed algorithm was applied to the MNIST database of handwritten digits to demonstrate its performance in comparison with classifiers based on PCA of raw input data.\",\"PeriodicalId\":308087,\"journal\":{\"name\":\"2017 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACRIM.2017.8121906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.2017.8121906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

提出了一种基于方向梯度直方图主成分分析(PCA)的多类分类器,用于手写体数字的准确快速识别。HOG被认为是计算机视觉和图像处理中有效的特征描述符,PCA已经显示出其快速多类识别的能力。将PCA与HOG相结合,开发了基于PCA-of-HOG的分类器。将该算法应用于手写数字MNIST数据库,并与基于原始输入数据PCA的分类器进行了性能比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Handwritten digits recognition using PCA of histogram of oriented gradient
This paper presents a multiclass classifier based on principal component analysis (PCA) of histogram of oriented gradient (HOG) for accurate and fast recognition of handwritten digits. HOG is known as an effective feature descriptor for computer vision and image processing, and PCA has shown its ability for fast multiclass recorgenition. By combining PCA with HOG, the PCA-of-HOG based classifier is developed. The proposed algorithm was applied to the MNIST database of handwritten digits to demonstrate its performance in comparison with classifiers based on PCA of raw input data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信