一个新颖的推荐系统,帮助马拉松运动员达到一个新的个人最好

Barry Smyth, P. Cunningham
{"title":"一个新颖的推荐系统,帮助马拉松运动员达到一个新的个人最好","authors":"Barry Smyth, P. Cunningham","doi":"10.1145/3109859.3109874","DOIUrl":null,"url":null,"abstract":"We describe a novel application for recommender systems -- helping marathon runners to run a new personal-best race-time -- by predicting a challenging, but achievable target-time, and by recommending a tailored race-plan to achieve this time. A comprehensive evaluation of prediction accuracy and race-plan quality is provided using a large-scale dataset with almost 400,000 runners from the last 12 years of the Chicago marathon.","PeriodicalId":417173,"journal":{"name":"Proceedings of the Eleventh ACM Conference on Recommender Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"A Novel Recommender System for Helping Marathoners to Achieve a New Personal-Best\",\"authors\":\"Barry Smyth, P. Cunningham\",\"doi\":\"10.1145/3109859.3109874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a novel application for recommender systems -- helping marathon runners to run a new personal-best race-time -- by predicting a challenging, but achievable target-time, and by recommending a tailored race-plan to achieve this time. A comprehensive evaluation of prediction accuracy and race-plan quality is provided using a large-scale dataset with almost 400,000 runners from the last 12 years of the Chicago marathon.\",\"PeriodicalId\":417173,\"journal\":{\"name\":\"Proceedings of the Eleventh ACM Conference on Recommender Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eleventh ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3109859.3109874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3109859.3109874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

我们描述了推荐系统的一种新应用——通过预测一个具有挑战性但可以实现的目标时间,并通过推荐量身定制的比赛计划来实现这一目标时间,帮助马拉松运动员跑出新的个人最佳成绩。利用过去12年芝加哥马拉松比赛的近40万名选手的大规模数据集,对预测准确性和比赛计划质量进行了全面评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Recommender System for Helping Marathoners to Achieve a New Personal-Best
We describe a novel application for recommender systems -- helping marathon runners to run a new personal-best race-time -- by predicting a challenging, but achievable target-time, and by recommending a tailored race-plan to achieve this time. A comprehensive evaluation of prediction accuracy and race-plan quality is provided using a large-scale dataset with almost 400,000 runners from the last 12 years of the Chicago marathon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信