基于小数据集的递归神经网络手写生成实验

Yushun Liu, Liguo Liu, Xuhui Miao
{"title":"基于小数据集的递归神经网络手写生成实验","authors":"Yushun Liu, Liguo Liu, Xuhui Miao","doi":"10.1145/3480433.3480446","DOIUrl":null,"url":null,"abstract":"This paper examines the performance of a specific Long-Short Term Memory Recurrent Neural Network for cursive handwriting generation when training with small datasets. The RNN can generate complex structure sequences by predicting one data point at a time. Then, by predicting the overall writing structure, the handwriting can be synthesized. The resulting network can generate different handwriting style parameters.","PeriodicalId":415865,"journal":{"name":"2021 5th International Conference on Artificial Intelligence and Virtual Reality (AIVR)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experiment on Handwriting Generation with Recurrent Neural Networks using Small Datasets\",\"authors\":\"Yushun Liu, Liguo Liu, Xuhui Miao\",\"doi\":\"10.1145/3480433.3480446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines the performance of a specific Long-Short Term Memory Recurrent Neural Network for cursive handwriting generation when training with small datasets. The RNN can generate complex structure sequences by predicting one data point at a time. Then, by predicting the overall writing structure, the handwriting can be synthesized. The resulting network can generate different handwriting style parameters.\",\"PeriodicalId\":415865,\"journal\":{\"name\":\"2021 5th International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 5th International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3480433.3480446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 5th International Conference on Artificial Intelligence and Virtual Reality (AIVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3480433.3480446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种特定的长短期记忆递归神经网络在小数据集训练下的草书手写生成性能。RNN可以通过每次预测一个数据点来生成复杂的结构序列。然后,通过预测整体的书写结构,可以合成笔迹。由此产生的网络可以生成不同的手写样式参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experiment on Handwriting Generation with Recurrent Neural Networks using Small Datasets
This paper examines the performance of a specific Long-Short Term Memory Recurrent Neural Network for cursive handwriting generation when training with small datasets. The RNN can generate complex structure sequences by predicting one data point at a time. Then, by predicting the overall writing structure, the handwriting can be synthesized. The resulting network can generate different handwriting style parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信