利用循环平稳性提取近周期信号

A. V. Dandawate, G. Giannakis
{"title":"利用循环平稳性提取近周期信号","authors":"A. V. Dandawate, G. Giannakis","doi":"10.1109/ICASSP.1994.389851","DOIUrl":null,"url":null,"abstract":"Extraction of almost periodic signals from their noisy observations is accomplished by exploiting cyclostationarity. The additive noise is allowed to be generally cyclostationary with unknown distribution. Consistency of the proposed estimators is proved and their asymptotic properties are presented. Further, adaptive algorithms are employed for tracking possible time-variations in the parameters of the almost periodic signal. Finally, the proposed methods are tested via simulations.<<ETX>>","PeriodicalId":290798,"journal":{"name":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Extraction of almost periodic signals using cyclostationarity\",\"authors\":\"A. V. Dandawate, G. Giannakis\",\"doi\":\"10.1109/ICASSP.1994.389851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extraction of almost periodic signals from their noisy observations is accomplished by exploiting cyclostationarity. The additive noise is allowed to be generally cyclostationary with unknown distribution. Consistency of the proposed estimators is proved and their asymptotic properties are presented. Further, adaptive algorithms are employed for tracking possible time-variations in the parameters of the almost periodic signal. Finally, the proposed methods are tested via simulations.<<ETX>>\",\"PeriodicalId\":290798,\"journal\":{\"name\":\"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1994.389851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1994.389851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

利用循环平稳性从噪声观测中提取几乎周期性的信号。允许加性噪声一般为循环平稳且分布未知。证明了所提估计量的相合性,并给出了它们的渐近性质。此外,采用自适应算法跟踪近周期信号参数的可能时变。最后,通过仿真对所提方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extraction of almost periodic signals using cyclostationarity
Extraction of almost periodic signals from their noisy observations is accomplished by exploiting cyclostationarity. The additive noise is allowed to be generally cyclostationary with unknown distribution. Consistency of the proposed estimators is proved and their asymptotic properties are presented. Further, adaptive algorithms are employed for tracking possible time-variations in the parameters of the almost periodic signal. Finally, the proposed methods are tested via simulations.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信