用模糊本体解释时间序列异常的定义

D. Kurilo, V. Moshkin, I. Andreev, N. Yarushkina
{"title":"用模糊本体解释时间序列异常的定义","authors":"D. Kurilo, V. Moshkin, I. Andreev, N. Yarushkina","doi":"10.1109/ITNT57377.2023.10139035","DOIUrl":null,"url":null,"abstract":"The paper describes an approach to detecting time series anomalies, taking into account the specifics of the subject area, represented as a fuzzy ontology. The approach involves the use of LSTM (long short-term memory) networks for the mathematical search for anomalies, fuzzy ontology allows you to filter the detection results and draw an inference for decision making.","PeriodicalId":296438,"journal":{"name":"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpreting the definition of time series anomalies using fuzzy ontologies\",\"authors\":\"D. Kurilo, V. Moshkin, I. Andreev, N. Yarushkina\",\"doi\":\"10.1109/ITNT57377.2023.10139035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes an approach to detecting time series anomalies, taking into account the specifics of the subject area, represented as a fuzzy ontology. The approach involves the use of LSTM (long short-term memory) networks for the mathematical search for anomalies, fuzzy ontology allows you to filter the detection results and draw an inference for decision making.\",\"PeriodicalId\":296438,\"journal\":{\"name\":\"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITNT57377.2023.10139035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNT57377.2023.10139035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一种检测时间序列异常的方法,考虑到主题领域的具体情况,表示为模糊本体。该方法涉及使用LSTM(长短期记忆)网络对异常进行数学搜索,模糊本体允许您过滤检测结果并为决策做出推断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpreting the definition of time series anomalies using fuzzy ontologies
The paper describes an approach to detecting time series anomalies, taking into account the specifics of the subject area, represented as a fuzzy ontology. The approach involves the use of LSTM (long short-term memory) networks for the mathematical search for anomalies, fuzzy ontology allows you to filter the detection results and draw an inference for decision making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信