N. Noels, M. Moeneclaey, F. Simoens, D. Delaruelle
{"title":"降低相位噪声影响BIC-CPM实现复杂度的迭代接收机","authors":"N. Noels, M. Moeneclaey, F. Simoens, D. Delaruelle","doi":"10.1109/CTS.2011.5898949","DOIUrl":null,"url":null,"abstract":"This paper considers iterative detection of bit-interleaved coded continuous phase modulation in the presence of both phase noise (PN) and additive white Gaussian noise (AWGN). The proposed receiver iterates between a detection module and an estimation module. The detection module operates according to the sum-product algorithm and the factor graph framework in order to perform coherent maximum a posteriori bit detection in AWGN, using a PN estimate provided by the estimation module. The latter module, which results from the expectation-maximization algorithm for maximum likelihood estimation of the unknown PN samples, is implemented as a smoothing phase-locked loop that uses soft decisions provided by the detector. The full decoupling between the detection and the estimation processes allows the use of an off-the-shelf (coherent) bit detector. The technique is further characterized by a very low computational complexity, a small error performance degradation and a small number of overhead symbols.","PeriodicalId":142306,"journal":{"name":"2011 18th International Conference on Telecommunications","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Iterative receiver with reduced implementation complexity for phase noise affected BIC-CPM\",\"authors\":\"N. Noels, M. Moeneclaey, F. Simoens, D. Delaruelle\",\"doi\":\"10.1109/CTS.2011.5898949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers iterative detection of bit-interleaved coded continuous phase modulation in the presence of both phase noise (PN) and additive white Gaussian noise (AWGN). The proposed receiver iterates between a detection module and an estimation module. The detection module operates according to the sum-product algorithm and the factor graph framework in order to perform coherent maximum a posteriori bit detection in AWGN, using a PN estimate provided by the estimation module. The latter module, which results from the expectation-maximization algorithm for maximum likelihood estimation of the unknown PN samples, is implemented as a smoothing phase-locked loop that uses soft decisions provided by the detector. The full decoupling between the detection and the estimation processes allows the use of an off-the-shelf (coherent) bit detector. The technique is further characterized by a very low computational complexity, a small error performance degradation and a small number of overhead symbols.\",\"PeriodicalId\":142306,\"journal\":{\"name\":\"2011 18th International Conference on Telecommunications\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 18th International Conference on Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CTS.2011.5898949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 18th International Conference on Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CTS.2011.5898949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Iterative receiver with reduced implementation complexity for phase noise affected BIC-CPM
This paper considers iterative detection of bit-interleaved coded continuous phase modulation in the presence of both phase noise (PN) and additive white Gaussian noise (AWGN). The proposed receiver iterates between a detection module and an estimation module. The detection module operates according to the sum-product algorithm and the factor graph framework in order to perform coherent maximum a posteriori bit detection in AWGN, using a PN estimate provided by the estimation module. The latter module, which results from the expectation-maximization algorithm for maximum likelihood estimation of the unknown PN samples, is implemented as a smoothing phase-locked loop that uses soft decisions provided by the detector. The full decoupling between the detection and the estimation processes allows the use of an off-the-shelf (coherent) bit detector. The technique is further characterized by a very low computational complexity, a small error performance degradation and a small number of overhead symbols.