利用隐层判别信息引导人工神经网络

Arefeen Rahman Niloy, Farzana Afrin Taniza, Muhammad Ali, Md. Abdullah Al Mashud, Swakkhar Shatabda, C. M. Rahman
{"title":"利用隐层判别信息引导人工神经网络","authors":"Arefeen Rahman Niloy, Farzana Afrin Taniza, Muhammad Ali, Md. Abdullah Al Mashud, Swakkhar Shatabda, C. M. Rahman","doi":"10.1109/WIECON-ECE.2017.8468907","DOIUrl":null,"url":null,"abstract":"Artificial Neural Networks (ANN) are gaining much of popularity in recent years due to the advancement of fast GPU based machines and tremendous growth in data to train the networks. Traditionally back propagation algorithms are used to learn network weights that minimizes the error in the training set. Recent advances in Deep Neural Networks have shown that intermediate hidden network are able to learn structural features even from unstructured input data. In this paper, we propose a novel method to guide ANN learning algorithms using the discriminatory information available in the intermediate hidden layers of the network. For a binary classification problem, we guide the learning algorithm minimizing the discriminatory information of each individual neurons along with traditional error function. We have tested our proposed method on several standard benchmark datasets. Experimental results are promising and show significant improvement over traditional error functions.","PeriodicalId":188031,"journal":{"name":"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Guiding Artificial Neural Networks Using Discriminatory Information In Hidden Layers\",\"authors\":\"Arefeen Rahman Niloy, Farzana Afrin Taniza, Muhammad Ali, Md. Abdullah Al Mashud, Swakkhar Shatabda, C. M. Rahman\",\"doi\":\"10.1109/WIECON-ECE.2017.8468907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial Neural Networks (ANN) are gaining much of popularity in recent years due to the advancement of fast GPU based machines and tremendous growth in data to train the networks. Traditionally back propagation algorithms are used to learn network weights that minimizes the error in the training set. Recent advances in Deep Neural Networks have shown that intermediate hidden network are able to learn structural features even from unstructured input data. In this paper, we propose a novel method to guide ANN learning algorithms using the discriminatory information available in the intermediate hidden layers of the network. For a binary classification problem, we guide the learning algorithm minimizing the discriminatory information of each individual neurons along with traditional error function. We have tested our proposed method on several standard benchmark datasets. Experimental results are promising and show significant improvement over traditional error functions.\",\"PeriodicalId\":188031,\"journal\":{\"name\":\"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIECON-ECE.2017.8468907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIECON-ECE.2017.8468907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,由于基于GPU的快速机器的进步和用于训练网络的数据的巨大增长,人工神经网络(ANN)越来越受欢迎。传统的反向传播算法用于学习网络权重,使训练集中的误差最小化。深度神经网络的最新进展表明,中间隐藏网络甚至可以从非结构化输入数据中学习结构特征。在本文中,我们提出了一种新的方法,利用网络中间隐藏层中可用的判别信息来指导人工神经网络的学习算法。对于二值分类问题,我们指导学习算法在传统误差函数的基础上最小化单个神经元的区别信息。我们已经在几个标准基准数据集上测试了我们提出的方法。实验结果表明,该方法比传统的误差函数有了很大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Guiding Artificial Neural Networks Using Discriminatory Information In Hidden Layers
Artificial Neural Networks (ANN) are gaining much of popularity in recent years due to the advancement of fast GPU based machines and tremendous growth in data to train the networks. Traditionally back propagation algorithms are used to learn network weights that minimizes the error in the training set. Recent advances in Deep Neural Networks have shown that intermediate hidden network are able to learn structural features even from unstructured input data. In this paper, we propose a novel method to guide ANN learning algorithms using the discriminatory information available in the intermediate hidden layers of the network. For a binary classification problem, we guide the learning algorithm minimizing the discriminatory information of each individual neurons along with traditional error function. We have tested our proposed method on several standard benchmark datasets. Experimental results are promising and show significant improvement over traditional error functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信