基于多尺度积分不变量的2.5D人脸标记检测

Adam Slater, Y. Hu, N. Boston
{"title":"基于多尺度积分不变量的2.5D人脸标记检测","authors":"Adam Slater, Y. Hu, N. Boston","doi":"10.1109/MMSP.2007.4412846","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a novel 3D surface landmark detection method using a 3D integral invariant feature extended from that proposed by Manay et al. for 2D contours. We apply this new feature to detect the nose tips of 2.5D range images of human faces. Using the Face Recognition Grand Challenge 2.0 dataset, our method compares favorably with a recently proposed competing method.","PeriodicalId":225295,"journal":{"name":"2007 IEEE 9th Workshop on Multimedia Signal Processing","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiscale Integral Invariants For Facial Landmark Detection in 2.5D Data\",\"authors\":\"Adam Slater, Y. Hu, N. Boston\",\"doi\":\"10.1109/MMSP.2007.4412846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a novel 3D surface landmark detection method using a 3D integral invariant feature extended from that proposed by Manay et al. for 2D contours. We apply this new feature to detect the nose tips of 2.5D range images of human faces. Using the Face Recognition Grand Challenge 2.0 dataset, our method compares favorably with a recently proposed competing method.\",\"PeriodicalId\":225295,\"journal\":{\"name\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2007.4412846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 9th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2007.4412846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们介绍了一种新的三维表面地标检测方法,该方法使用了Manay等人提出的二维轮廓的三维积分不变特征进行扩展。我们将这一新特征应用于人脸2.5D范围图像的鼻尖检测。使用人脸识别大挑战2.0数据集,我们的方法与最近提出的竞争方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscale Integral Invariants For Facial Landmark Detection in 2.5D Data
In this paper, we introduce a novel 3D surface landmark detection method using a 3D integral invariant feature extended from that proposed by Manay et al. for 2D contours. We apply this new feature to detect the nose tips of 2.5D range images of human faces. Using the Face Recognition Grand Challenge 2.0 dataset, our method compares favorably with a recently proposed competing method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信