{"title":"基于多尺度积分不变量的2.5D人脸标记检测","authors":"Adam Slater, Y. Hu, N. Boston","doi":"10.1109/MMSP.2007.4412846","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a novel 3D surface landmark detection method using a 3D integral invariant feature extended from that proposed by Manay et al. for 2D contours. We apply this new feature to detect the nose tips of 2.5D range images of human faces. Using the Face Recognition Grand Challenge 2.0 dataset, our method compares favorably with a recently proposed competing method.","PeriodicalId":225295,"journal":{"name":"2007 IEEE 9th Workshop on Multimedia Signal Processing","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiscale Integral Invariants For Facial Landmark Detection in 2.5D Data\",\"authors\":\"Adam Slater, Y. Hu, N. Boston\",\"doi\":\"10.1109/MMSP.2007.4412846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a novel 3D surface landmark detection method using a 3D integral invariant feature extended from that proposed by Manay et al. for 2D contours. We apply this new feature to detect the nose tips of 2.5D range images of human faces. Using the Face Recognition Grand Challenge 2.0 dataset, our method compares favorably with a recently proposed competing method.\",\"PeriodicalId\":225295,\"journal\":{\"name\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 9th Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2007.4412846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 9th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2007.4412846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiscale Integral Invariants For Facial Landmark Detection in 2.5D Data
In this paper, we introduce a novel 3D surface landmark detection method using a 3D integral invariant feature extended from that proposed by Manay et al. for 2D contours. We apply this new feature to detect the nose tips of 2.5D range images of human faces. Using the Face Recognition Grand Challenge 2.0 dataset, our method compares favorably with a recently proposed competing method.