从跟踪中学习web服务任务描述

Thomas J. Walsh, M. Littman, Alexander Borgida
{"title":"从跟踪中学习web服务任务描述","authors":"Thomas J. Walsh, M. Littman, Alexander Borgida","doi":"10.3233/WIA-2012-0254","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of learning task specific web-service descriptions from traces of users successfully completing a task. Unlike prior approaches, we take a traditional machine-learning perspective to the construction of web-service models from data. Our representation models both syntactic features of web-service schemas including lists and optional elements, as well as semantic relations between objects in the task. Together, these learned models form a full schematic model of the dataflow. Our theoretical results, which are the main novelty in the paper, show that this structure can be learned efficiently: the number of traces required for learning grows polynomially with the size of the task. We also present real-world task descriptions mined from tasks using online services from Amazon and Google.","PeriodicalId":263450,"journal":{"name":"Web Intell. Agent Syst.","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning web-service task descriptions from traces\",\"authors\":\"Thomas J. Walsh, M. Littman, Alexander Borgida\",\"doi\":\"10.3233/WIA-2012-0254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the problem of learning task specific web-service descriptions from traces of users successfully completing a task. Unlike prior approaches, we take a traditional machine-learning perspective to the construction of web-service models from data. Our representation models both syntactic features of web-service schemas including lists and optional elements, as well as semantic relations between objects in the task. Together, these learned models form a full schematic model of the dataflow. Our theoretical results, which are the main novelty in the paper, show that this structure can be learned efficiently: the number of traces required for learning grows polynomially with the size of the task. We also present real-world task descriptions mined from tasks using online services from Amazon and Google.\",\"PeriodicalId\":263450,\"journal\":{\"name\":\"Web Intell. Agent Syst.\",\"volume\":\"205 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web Intell. Agent Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/WIA-2012-0254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intell. Agent Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/WIA-2012-0254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了从用户成功完成任务的痕迹中学习特定于任务的web服务描述的问题。与之前的方法不同,我们采用传统的机器学习视角来从数据构建web服务模型。我们的表示既模拟了web服务模式(包括列表和可选元素)的语法特征,也模拟了任务中对象之间的语义关系。这些学习到的模型一起构成了数据流的完整示意图模型。我们的理论结果是本文的主要新颖之处,表明这种结构可以有效地学习:学习所需的轨迹数量随着任务的大小呈多项式增长。我们还展示了从使用亚马逊和谷歌在线服务的任务中挖掘出来的真实世界的任务描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning web-service task descriptions from traces
This paper considers the problem of learning task specific web-service descriptions from traces of users successfully completing a task. Unlike prior approaches, we take a traditional machine-learning perspective to the construction of web-service models from data. Our representation models both syntactic features of web-service schemas including lists and optional elements, as well as semantic relations between objects in the task. Together, these learned models form a full schematic model of the dataflow. Our theoretical results, which are the main novelty in the paper, show that this structure can be learned efficiently: the number of traces required for learning grows polynomially with the size of the task. We also present real-world task descriptions mined from tasks using online services from Amazon and Google.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信