扩展空间表示数据集中Top-K%时空共现模式的挖掘

K. Pillai, R. Angryk, J. Banda, Dustin J. Kempton, Berkay Aydin, P. Martens
{"title":"扩展空间表示数据集中Top-K%时空共现模式的挖掘","authors":"K. Pillai, R. Angryk, J. Banda, Dustin J. Kempton, Berkay Aydin, P. Martens","doi":"10.1145/2936775","DOIUrl":null,"url":null,"abstract":"Spatiotemporal co-occurrence patterns (STCOPs) in datasets with extended spatial representations are two or more different event types, represented as polygons evolving in time, whose instances often occur together in both space and time. Finding STCOPs is an important problem in domains such as weather monitoring, wildlife migration, and solar physics. Nevertheless, in real life, it is difficult to find a suitable prevalence threshold without prior domain-specific knowledge. In this article, we focus our work on the problem of mining at most top-K% of STCOPs from continuously evolving spatiotemporal events that have polygon-like representations, without using a user-specified prevalence threshold.","PeriodicalId":202328,"journal":{"name":"ACM Trans. Spatial Algorithms Syst.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Mining At Most Top-K% Spatiotemporal Co-occurrence Patterns in Datasets with Extended Spatial Representations\",\"authors\":\"K. Pillai, R. Angryk, J. Banda, Dustin J. Kempton, Berkay Aydin, P. Martens\",\"doi\":\"10.1145/2936775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatiotemporal co-occurrence patterns (STCOPs) in datasets with extended spatial representations are two or more different event types, represented as polygons evolving in time, whose instances often occur together in both space and time. Finding STCOPs is an important problem in domains such as weather monitoring, wildlife migration, and solar physics. Nevertheless, in real life, it is difficult to find a suitable prevalence threshold without prior domain-specific knowledge. In this article, we focus our work on the problem of mining at most top-K% of STCOPs from continuously evolving spatiotemporal events that have polygon-like representations, without using a user-specified prevalence threshold.\",\"PeriodicalId\":202328,\"journal\":{\"name\":\"ACM Trans. Spatial Algorithms Syst.\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Spatial Algorithms Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2936775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Spatial Algorithms Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2936775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

具有扩展空间表示的数据集中的时空共现模式(stcop)是两种或两种以上不同的事件类型,以随时间演变的多边形表示,其实例通常在空间和时间上同时发生。寻找stcop是天气监测、野生动物迁徙和太阳物理等领域的重要问题。然而,在现实生活中,如果没有事先的特定领域知识,很难找到合适的流行阈值。在本文中,我们的工作重点是在不使用用户指定的流行阈值的情况下,从具有多边形表示的连续发展的时空事件中挖掘最多top-K%的stcop问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining At Most Top-K% Spatiotemporal Co-occurrence Patterns in Datasets with Extended Spatial Representations
Spatiotemporal co-occurrence patterns (STCOPs) in datasets with extended spatial representations are two or more different event types, represented as polygons evolving in time, whose instances often occur together in both space and time. Finding STCOPs is an important problem in domains such as weather monitoring, wildlife migration, and solar physics. Nevertheless, in real life, it is difficult to find a suitable prevalence threshold without prior domain-specific knowledge. In this article, we focus our work on the problem of mining at most top-K% of STCOPs from continuously evolving spatiotemporal events that have polygon-like representations, without using a user-specified prevalence threshold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信