{"title":"基于核支持向量机的高效内存行人检测硬件加速器","authors":"Asim Khan, C. Kyung","doi":"10.1109/ISOCC.2016.7799723","DOIUrl":null,"url":null,"abstract":"Pedestrian detection being a vital as well as complex problem poses a unique challenge from accuracy and complexity point of view. On-chip memory requirement is one of the key issues for sliding window based detectors. In this paper a memory efficient hardware architecture is proposed which estimates the weights from a partially stored model at runtime. It uses a simple and robust feature with histogram intersection classifier. The implementation results show 80% reduction in logic resources and 46% reduction in memory without sacrificing accuracy as compared to the state of the art hardware implementations.","PeriodicalId":278207,"journal":{"name":"2016 International SoC Design Conference (ISOCC)","volume":"241 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Memory efficient hardware accelerator for kernel support vector machine based pedestrian detection\",\"authors\":\"Asim Khan, C. Kyung\",\"doi\":\"10.1109/ISOCC.2016.7799723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pedestrian detection being a vital as well as complex problem poses a unique challenge from accuracy and complexity point of view. On-chip memory requirement is one of the key issues for sliding window based detectors. In this paper a memory efficient hardware architecture is proposed which estimates the weights from a partially stored model at runtime. It uses a simple and robust feature with histogram intersection classifier. The implementation results show 80% reduction in logic resources and 46% reduction in memory without sacrificing accuracy as compared to the state of the art hardware implementations.\",\"PeriodicalId\":278207,\"journal\":{\"name\":\"2016 International SoC Design Conference (ISOCC)\",\"volume\":\"241 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International SoC Design Conference (ISOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISOCC.2016.7799723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC.2016.7799723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Memory efficient hardware accelerator for kernel support vector machine based pedestrian detection
Pedestrian detection being a vital as well as complex problem poses a unique challenge from accuracy and complexity point of view. On-chip memory requirement is one of the key issues for sliding window based detectors. In this paper a memory efficient hardware architecture is proposed which estimates the weights from a partially stored model at runtime. It uses a simple and robust feature with histogram intersection classifier. The implementation results show 80% reduction in logic resources and 46% reduction in memory without sacrificing accuracy as compared to the state of the art hardware implementations.