基于CDHMM的鲁棒连续语音识别的极大极小搜索算法

Hui Jiang, K. Hirose, Qiang Huo
{"title":"基于CDHMM的鲁棒连续语音识别的极大极小搜索算法","authors":"Hui Jiang, K. Hirose, Qiang Huo","doi":"10.21437/ICSLP.1998-304","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel implementation of a minimax decision rule for continuous density hidden Markov model based robust speech recognition. By combining the idea of the minimax decision rule with a normal Viterbi search, we derive a recursive minimax search algorithm, where the minimax decision rule is repetitively applied to determine the partial paths during the search procedure. Because of its intrinsic nature of a recursive search, the proposed method can be easily extended to perform contin-uos speech recognition. Experimental results on Japanese isolated digits and TIDIGITS, where the mismatch between training and testing conditions is caused by additive white Gaussian noise, show the viability and e(cid:14)ciency of the proposed minimax search algorithm.","PeriodicalId":117113,"journal":{"name":"5th International Conference on Spoken Language Processing (ICSLP 1998)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A minimax search algorithm for CDHMM based robust continuous speech recognition\",\"authors\":\"Hui Jiang, K. Hirose, Qiang Huo\",\"doi\":\"10.21437/ICSLP.1998-304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel implementation of a minimax decision rule for continuous density hidden Markov model based robust speech recognition. By combining the idea of the minimax decision rule with a normal Viterbi search, we derive a recursive minimax search algorithm, where the minimax decision rule is repetitively applied to determine the partial paths during the search procedure. Because of its intrinsic nature of a recursive search, the proposed method can be easily extended to perform contin-uos speech recognition. Experimental results on Japanese isolated digits and TIDIGITS, where the mismatch between training and testing conditions is caused by additive white Gaussian noise, show the viability and e(cid:14)ciency of the proposed minimax search algorithm.\",\"PeriodicalId\":117113,\"journal\":{\"name\":\"5th International Conference on Spoken Language Processing (ICSLP 1998)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"5th International Conference on Spoken Language Processing (ICSLP 1998)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/ICSLP.1998-304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Spoken Language Processing (ICSLP 1998)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/ICSLP.1998-304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种基于连续密度隐马尔可夫模型的鲁棒语音识别的极大极小决策规则的实现方法。将极大极小决策规则的思想与一般的Viterbi搜索相结合,导出了一种递归极大极小搜索算法,该算法在搜索过程中反复应用极大极小决策规则来确定部分路径。由于其固有的递归搜索特性,所提出的方法可以很容易地扩展到执行连续语音识别。在日文孤立数字和TIDIGITS上的实验结果表明,训练条件与测试条件不匹配是由加性高斯白噪声引起的,实验结果表明了极小极大搜索算法的可行性和e(cid:14)的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A minimax search algorithm for CDHMM based robust continuous speech recognition
In this paper, we propose a novel implementation of a minimax decision rule for continuous density hidden Markov model based robust speech recognition. By combining the idea of the minimax decision rule with a normal Viterbi search, we derive a recursive minimax search algorithm, where the minimax decision rule is repetitively applied to determine the partial paths during the search procedure. Because of its intrinsic nature of a recursive search, the proposed method can be easily extended to perform contin-uos speech recognition. Experimental results on Japanese isolated digits and TIDIGITS, where the mismatch between training and testing conditions is caused by additive white Gaussian noise, show the viability and e(cid:14)ciency of the proposed minimax search algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信