HPC环境下基于ml的时变密度泛函理论的性能可移植性

A. P. Diéguez, Min Choi, Xinran Zhu, Bryan M. Wong, K. Ibrahim
{"title":"HPC环境下基于ml的时变密度泛函理论的性能可移植性","authors":"A. P. Diéguez, Min Choi, Xinran Zhu, Bryan M. Wong, K. Ibrahim","doi":"10.1109/PMBS56514.2022.00006","DOIUrl":null,"url":null,"abstract":"Time-Dependent Density Functional Theory (TDDFT) workloads are an example of high-impact computational methods that require leveraging the performance of HPC architectures. However, finding the optimal values of their performance-critical parameters raises performance portability challenges that must be addressed. In this work, we propose an ML-based tuning methodology based on Bayesian optimization and transfer learning to tackle the performance portability for TDDFT codes in HPC systems. Our results demonstrate the effectiveness of our transfer-learning proposal for TDDFT workloads, which reduced the number of executed evaluations by up to 86% compared to an exhaustive search for the global optimal performance parameters on the Cori and Perlmutter supercomputers. Compared to a Bayesian-optimization search, our proposal reduces the required evaluations by up to 46.7% to find the same optimal runtime configuration. Overall, this methodology can be applied to other scientific workloads for current and emerging high-performance architectures.","PeriodicalId":321991,"journal":{"name":"2022 IEEE/ACM International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ML-based Performance Portability for Time-Dependent Density Functional Theory in HPC Environments\",\"authors\":\"A. P. Diéguez, Min Choi, Xinran Zhu, Bryan M. Wong, K. Ibrahim\",\"doi\":\"10.1109/PMBS56514.2022.00006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-Dependent Density Functional Theory (TDDFT) workloads are an example of high-impact computational methods that require leveraging the performance of HPC architectures. However, finding the optimal values of their performance-critical parameters raises performance portability challenges that must be addressed. In this work, we propose an ML-based tuning methodology based on Bayesian optimization and transfer learning to tackle the performance portability for TDDFT codes in HPC systems. Our results demonstrate the effectiveness of our transfer-learning proposal for TDDFT workloads, which reduced the number of executed evaluations by up to 86% compared to an exhaustive search for the global optimal performance parameters on the Cori and Perlmutter supercomputers. Compared to a Bayesian-optimization search, our proposal reduces the required evaluations by up to 46.7% to find the same optimal runtime configuration. Overall, this methodology can be applied to other scientific workloads for current and emerging high-performance architectures.\",\"PeriodicalId\":321991,\"journal\":{\"name\":\"2022 IEEE/ACM International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PMBS56514.2022.00006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMBS56514.2022.00006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

时间相关密度泛函理论(TDDFT)工作负载是需要利用HPC架构性能的高影响计算方法的一个示例。然而,找到它们的性能关键参数的最优值会带来必须解决的性能可移植性挑战。在这项工作中,我们提出了一种基于贝叶斯优化和迁移学习的基于ml的调优方法,以解决高性能计算系统中TDDFT代码的性能可移植性问题。我们的研究结果证明了我们的TDDFT工作负载迁移学习建议的有效性,与在Cori和Perlmutter超级计算机上对全局最优性能参数进行穷举搜索相比,它减少了高达86%的执行评估次数。与贝叶斯优化搜索相比,我们的建议将所需的评估减少了46.7%,以找到相同的最佳运行时配置。总的来说,该方法可以应用于当前和新兴高性能体系结构的其他科学工作负载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ML-based Performance Portability for Time-Dependent Density Functional Theory in HPC Environments
Time-Dependent Density Functional Theory (TDDFT) workloads are an example of high-impact computational methods that require leveraging the performance of HPC architectures. However, finding the optimal values of their performance-critical parameters raises performance portability challenges that must be addressed. In this work, we propose an ML-based tuning methodology based on Bayesian optimization and transfer learning to tackle the performance portability for TDDFT codes in HPC systems. Our results demonstrate the effectiveness of our transfer-learning proposal for TDDFT workloads, which reduced the number of executed evaluations by up to 86% compared to an exhaustive search for the global optimal performance parameters on the Cori and Perlmutter supercomputers. Compared to a Bayesian-optimization search, our proposal reduces the required evaluations by up to 46.7% to find the same optimal runtime configuration. Overall, this methodology can be applied to other scientific workloads for current and emerging high-performance architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信