A. P. Diéguez, Min Choi, Xinran Zhu, Bryan M. Wong, K. Ibrahim
{"title":"HPC环境下基于ml的时变密度泛函理论的性能可移植性","authors":"A. P. Diéguez, Min Choi, Xinran Zhu, Bryan M. Wong, K. Ibrahim","doi":"10.1109/PMBS56514.2022.00006","DOIUrl":null,"url":null,"abstract":"Time-Dependent Density Functional Theory (TDDFT) workloads are an example of high-impact computational methods that require leveraging the performance of HPC architectures. However, finding the optimal values of their performance-critical parameters raises performance portability challenges that must be addressed. In this work, we propose an ML-based tuning methodology based on Bayesian optimization and transfer learning to tackle the performance portability for TDDFT codes in HPC systems. Our results demonstrate the effectiveness of our transfer-learning proposal for TDDFT workloads, which reduced the number of executed evaluations by up to 86% compared to an exhaustive search for the global optimal performance parameters on the Cori and Perlmutter supercomputers. Compared to a Bayesian-optimization search, our proposal reduces the required evaluations by up to 46.7% to find the same optimal runtime configuration. Overall, this methodology can be applied to other scientific workloads for current and emerging high-performance architectures.","PeriodicalId":321991,"journal":{"name":"2022 IEEE/ACM International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ML-based Performance Portability for Time-Dependent Density Functional Theory in HPC Environments\",\"authors\":\"A. P. Diéguez, Min Choi, Xinran Zhu, Bryan M. Wong, K. Ibrahim\",\"doi\":\"10.1109/PMBS56514.2022.00006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-Dependent Density Functional Theory (TDDFT) workloads are an example of high-impact computational methods that require leveraging the performance of HPC architectures. However, finding the optimal values of their performance-critical parameters raises performance portability challenges that must be addressed. In this work, we propose an ML-based tuning methodology based on Bayesian optimization and transfer learning to tackle the performance portability for TDDFT codes in HPC systems. Our results demonstrate the effectiveness of our transfer-learning proposal for TDDFT workloads, which reduced the number of executed evaluations by up to 86% compared to an exhaustive search for the global optimal performance parameters on the Cori and Perlmutter supercomputers. Compared to a Bayesian-optimization search, our proposal reduces the required evaluations by up to 46.7% to find the same optimal runtime configuration. Overall, this methodology can be applied to other scientific workloads for current and emerging high-performance architectures.\",\"PeriodicalId\":321991,\"journal\":{\"name\":\"2022 IEEE/ACM International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PMBS56514.2022.00006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMBS56514.2022.00006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ML-based Performance Portability for Time-Dependent Density Functional Theory in HPC Environments
Time-Dependent Density Functional Theory (TDDFT) workloads are an example of high-impact computational methods that require leveraging the performance of HPC architectures. However, finding the optimal values of their performance-critical parameters raises performance portability challenges that must be addressed. In this work, we propose an ML-based tuning methodology based on Bayesian optimization and transfer learning to tackle the performance portability for TDDFT codes in HPC systems. Our results demonstrate the effectiveness of our transfer-learning proposal for TDDFT workloads, which reduced the number of executed evaluations by up to 86% compared to an exhaustive search for the global optimal performance parameters on the Cori and Perlmutter supercomputers. Compared to a Bayesian-optimization search, our proposal reduces the required evaluations by up to 46.7% to find the same optimal runtime configuration. Overall, this methodology can be applied to other scientific workloads for current and emerging high-performance architectures.