{"title":"基于模糊粗糙集的用户特定信息检索技术:以维基百科数据为例","authors":"Nidhika Yadav, N. Chatterjee","doi":"10.4018/IJRSDA.2018100102","DOIUrl":null,"url":null,"abstract":"Information retrieval is widely used due to extremely large volume of text and image data available on the web and consequently, efficient retrieval is required. Text information retrieval is a branch of information retrieval which deals with text documents. Another key factor is the concern for a retrieval engine, often referred to as user-specific information retrieval, which works according to a specific user. This article performs a preliminary investigation of the proposed fuzzy rough sets-based model for user-specific text information retrieval. The model improves on the computational time required to compute the approximations compared to classical fuzzy rough set model by using Wikipedia as the information source. The technique also improves on the accuracy of clustering obtained for user specified classes.","PeriodicalId":152357,"journal":{"name":"Int. J. Rough Sets Data Anal.","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Fuzzy Rough Set Based Technique for User Specific Information Retrieval: A Case Study on Wikipedia Data\",\"authors\":\"Nidhika Yadav, N. Chatterjee\",\"doi\":\"10.4018/IJRSDA.2018100102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information retrieval is widely used due to extremely large volume of text and image data available on the web and consequently, efficient retrieval is required. Text information retrieval is a branch of information retrieval which deals with text documents. Another key factor is the concern for a retrieval engine, often referred to as user-specific information retrieval, which works according to a specific user. This article performs a preliminary investigation of the proposed fuzzy rough sets-based model for user-specific text information retrieval. The model improves on the computational time required to compute the approximations compared to classical fuzzy rough set model by using Wikipedia as the information source. The technique also improves on the accuracy of clustering obtained for user specified classes.\",\"PeriodicalId\":152357,\"journal\":{\"name\":\"Int. J. Rough Sets Data Anal.\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Rough Sets Data Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJRSDA.2018100102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Rough Sets Data Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJRSDA.2018100102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fuzzy Rough Set Based Technique for User Specific Information Retrieval: A Case Study on Wikipedia Data
Information retrieval is widely used due to extremely large volume of text and image data available on the web and consequently, efficient retrieval is required. Text information retrieval is a branch of information retrieval which deals with text documents. Another key factor is the concern for a retrieval engine, often referred to as user-specific information retrieval, which works according to a specific user. This article performs a preliminary investigation of the proposed fuzzy rough sets-based model for user-specific text information retrieval. The model improves on the computational time required to compute the approximations compared to classical fuzzy rough set model by using Wikipedia as the information source. The technique also improves on the accuracy of clustering obtained for user specified classes.