为在线工作负载监控检测云缓存:memcached中在线缺失率曲线估计的情况

Jorge R. Murillo, Gustavo Totoy, Cristina L. Abad
{"title":"为在线工作负载监控检测云缓存:memcached中在线缺失率曲线估计的情况","authors":"Jorge R. Murillo, Gustavo Totoy, Cristina L. Abad","doi":"10.1145/3152881.3152884","DOIUrl":null,"url":null,"abstract":"Fast and efficient algorithms to estimate miss rate curves have recently been proposed, yet these have not been incorporated into cloud caches. Numerous applications that could benefit from these techniques are relying on less useful cache metrics or incomplete information. We study how to instrument cloud caches to obtain online miss rate curves (MRCs). Our approach leverages state-of-the-art algorithms and data structures, thus incurring in negligible overhead. We also propose an alternative design that makes it easier to change the MRC estimation algorithm, as well as plug-in other monitoring techniques. We implemented our designs in one of the top cloud caches: Memcached. We show via experimentation, that our implementation is efficient. Finally, we discuss how our solution can be used to improve the management of cloud caches; in particular, our code can be used by caching middleware to auto-adapt to changes in workload and maximize performance.","PeriodicalId":407032,"journal":{"name":"Proceedings of the 16th Workshop on Adaptive and Reflective Middleware","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Instrumenting cloud caches for online workload monitoring: the case of online miss rate curve estimation in memcached\",\"authors\":\"Jorge R. Murillo, Gustavo Totoy, Cristina L. Abad\",\"doi\":\"10.1145/3152881.3152884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fast and efficient algorithms to estimate miss rate curves have recently been proposed, yet these have not been incorporated into cloud caches. Numerous applications that could benefit from these techniques are relying on less useful cache metrics or incomplete information. We study how to instrument cloud caches to obtain online miss rate curves (MRCs). Our approach leverages state-of-the-art algorithms and data structures, thus incurring in negligible overhead. We also propose an alternative design that makes it easier to change the MRC estimation algorithm, as well as plug-in other monitoring techniques. We implemented our designs in one of the top cloud caches: Memcached. We show via experimentation, that our implementation is efficient. Finally, we discuss how our solution can be used to improve the management of cloud caches; in particular, our code can be used by caching middleware to auto-adapt to changes in workload and maximize performance.\",\"PeriodicalId\":407032,\"journal\":{\"name\":\"Proceedings of the 16th Workshop on Adaptive and Reflective Middleware\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th Workshop on Adaptive and Reflective Middleware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3152881.3152884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th Workshop on Adaptive and Reflective Middleware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3152881.3152884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近提出了快速有效的算法来估计脱靶率曲线,但这些算法还没有被纳入云缓存中。许多可以从这些技术中受益的应用程序都依赖于不太有用的缓存度量或不完整的信息。我们研究了如何测量云缓存以获得在线缺失率曲线(MRCs)。我们的方法利用了最先进的算法和数据结构,因此产生的开销可以忽略不计。我们还提出了一种替代设计,使其更容易更改MRC估计算法,以及插件其他监测技术。我们在顶级云缓存之一Memcached中实现了我们的设计。我们通过实验证明,我们的实现是有效的。最后,我们讨论了如何使用我们的解决方案来改进云缓存的管理;特别是,缓存中间件可以使用我们的代码来自动适应工作负载的变化并最大化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Instrumenting cloud caches for online workload monitoring: the case of online miss rate curve estimation in memcached
Fast and efficient algorithms to estimate miss rate curves have recently been proposed, yet these have not been incorporated into cloud caches. Numerous applications that could benefit from these techniques are relying on less useful cache metrics or incomplete information. We study how to instrument cloud caches to obtain online miss rate curves (MRCs). Our approach leverages state-of-the-art algorithms and data structures, thus incurring in negligible overhead. We also propose an alternative design that makes it easier to change the MRC estimation algorithm, as well as plug-in other monitoring techniques. We implemented our designs in one of the top cloud caches: Memcached. We show via experimentation, that our implementation is efficient. Finally, we discuss how our solution can be used to improve the management of cloud caches; in particular, our code can be used by caching middleware to auto-adapt to changes in workload and maximize performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信