基于深度强化学习的HLS编译器相位排序

Qijing Huang, Ameer Haj-Ali, William S. Moses, J. Xiang, I. Stoica, K. Asanović, J. Wawrzynek
{"title":"基于深度强化学习的HLS编译器相位排序","authors":"Qijing Huang, Ameer Haj-Ali, William S. Moses, J. Xiang, I. Stoica, K. Asanović, J. Wawrzynek","doi":"10.1109/FCCM.2019.00049","DOIUrl":null,"url":null,"abstract":"The performance of the code generated by a compiler depends on the order in which the optimization passes are applied. In high-level synthesis, the quality of the generated circuit relates directly to the code generated by the front-end compiler. Choosing a good order–often referred to as the phase-ordering problem–is an NP-hard problem. In this paper, we evaluate a new technique to address the phase-ordering problem: deep reinforcement learning. We implement a framework in the context of the LLVM compiler to optimize the ordering for HLS programs and compare the performance of deep reinforcement learning to state-of-the-art algorithms that address the phase-ordering problem. Overall, our framework runs one to two orders of magnitude faster than these algorithms, and achieves a 16% improvement in circuit performance over the -O3 compiler flag.","PeriodicalId":116955,"journal":{"name":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"AutoPhase: Compiler Phase-Ordering for HLS with Deep Reinforcement Learning\",\"authors\":\"Qijing Huang, Ameer Haj-Ali, William S. Moses, J. Xiang, I. Stoica, K. Asanović, J. Wawrzynek\",\"doi\":\"10.1109/FCCM.2019.00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of the code generated by a compiler depends on the order in which the optimization passes are applied. In high-level synthesis, the quality of the generated circuit relates directly to the code generated by the front-end compiler. Choosing a good order–often referred to as the phase-ordering problem–is an NP-hard problem. In this paper, we evaluate a new technique to address the phase-ordering problem: deep reinforcement learning. We implement a framework in the context of the LLVM compiler to optimize the ordering for HLS programs and compare the performance of deep reinforcement learning to state-of-the-art algorithms that address the phase-ordering problem. Overall, our framework runs one to two orders of magnitude faster than these algorithms, and achieves a 16% improvement in circuit performance over the -O3 compiler flag.\",\"PeriodicalId\":116955,\"journal\":{\"name\":\"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2019.00049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2019.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

编译器生成的代码的性能取决于应用优化传递的顺序。在高级合成中,生成电路的质量与前端编译器生成的代码直接相关。选择一个好的顺序——通常被称为相排序问题——是一个np困难问题。在本文中,我们评估了一种解决相排序问题的新技术:深度强化学习。我们在LLVM编译器的上下文中实现了一个框架来优化HLS程序的排序,并将深度强化学习的性能与解决相排序问题的最先进算法进行了比较。总体而言,我们的框架运行速度比这些算法快一到两个数量级,并且比-O3编译器标志提高了16%的电路性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AutoPhase: Compiler Phase-Ordering for HLS with Deep Reinforcement Learning
The performance of the code generated by a compiler depends on the order in which the optimization passes are applied. In high-level synthesis, the quality of the generated circuit relates directly to the code generated by the front-end compiler. Choosing a good order–often referred to as the phase-ordering problem–is an NP-hard problem. In this paper, we evaluate a new technique to address the phase-ordering problem: deep reinforcement learning. We implement a framework in the context of the LLVM compiler to optimize the ordering for HLS programs and compare the performance of deep reinforcement learning to state-of-the-art algorithms that address the phase-ordering problem. Overall, our framework runs one to two orders of magnitude faster than these algorithms, and achieves a 16% improvement in circuit performance over the -O3 compiler flag.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信