基于深度语义学习的h&e染色图像肿瘤出芽检测

R. Banaeeyan, M. F. A. Fauzi, Wei Chen, Debbie Knight, H. Hampel, W. Frankel, M. Gürcan
{"title":"基于深度语义学习的h&e染色图像肿瘤出芽检测","authors":"R. Banaeeyan, M. F. A. Fauzi, Wei Chen, Debbie Knight, H. Hampel, W. Frankel, M. Gürcan","doi":"10.1109/TENCON50793.2020.9293732","DOIUrl":null,"url":null,"abstract":"Tumor buddings (TB), a special formation of cancerous cells that bud from the tumor front, are fast becoming the key indicator in modern clinical applications where they play a significant role in prognostic and evaluation of colorectal cancers in histopathological images. Recently, computational methods have been rapidly evolving in the domain of digital pathology, yet the literature lacks computerized approaches to automate the localization and segmentation of TBs in hematoxylin and eosin (H&E)-stained images. This research addresses this very challenging task of tumor budding detection in H&E images by presenting different deep learning architectures designed for semantic segmentation. The proposed design for a new Convolutional Neural Network (CNN) incorporates convolution filters with different factors of dilations. Multiple experiments based on a newly constructed colorectal cancer histopathological image collection provided promising performances. The best average intersection over union (IOU) for TB of 0.11, IOU for non-TB of 0.86, mean IOU of 0.49 and weighted IOU of 0.83 were observed.","PeriodicalId":283131,"journal":{"name":"2020 IEEE REGION 10 CONFERENCE (TENCON)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tumor Budding Detection in H&E-Stained Images Using Deep Semantic Learning\",\"authors\":\"R. Banaeeyan, M. F. A. Fauzi, Wei Chen, Debbie Knight, H. Hampel, W. Frankel, M. Gürcan\",\"doi\":\"10.1109/TENCON50793.2020.9293732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tumor buddings (TB), a special formation of cancerous cells that bud from the tumor front, are fast becoming the key indicator in modern clinical applications where they play a significant role in prognostic and evaluation of colorectal cancers in histopathological images. Recently, computational methods have been rapidly evolving in the domain of digital pathology, yet the literature lacks computerized approaches to automate the localization and segmentation of TBs in hematoxylin and eosin (H&E)-stained images. This research addresses this very challenging task of tumor budding detection in H&E images by presenting different deep learning architectures designed for semantic segmentation. The proposed design for a new Convolutional Neural Network (CNN) incorporates convolution filters with different factors of dilations. Multiple experiments based on a newly constructed colorectal cancer histopathological image collection provided promising performances. The best average intersection over union (IOU) for TB of 0.11, IOU for non-TB of 0.86, mean IOU of 0.49 and weighted IOU of 0.83 were observed.\",\"PeriodicalId\":283131,\"journal\":{\"name\":\"2020 IEEE REGION 10 CONFERENCE (TENCON)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE REGION 10 CONFERENCE (TENCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON50793.2020.9293732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE REGION 10 CONFERENCE (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON50793.2020.9293732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

肿瘤芽(Tumor buddings, TB)是一种从肿瘤前方萌发的癌细胞的特殊形态,在现代临床应用中迅速成为关键指标,在组织病理图像中对结直肠癌的预后和评估起着重要作用。最近,计算方法在数字病理学领域得到了迅速发展,但文献中缺乏计算机方法来自动定位和分割苏木精和伊红(H&E)染色图像中的结核。本研究通过提出用于语义分割的不同深度学习架构,解决了H&E图像中肿瘤萌芽检测这一非常具有挑战性的任务。提出了一种新的卷积神经网络(CNN)的设计,该网络采用了具有不同扩张因子的卷积滤波器。基于新构建的结直肠癌组织病理图像集的多次实验显示了良好的性能。结核菌群的最佳平均交点/结合力(IOU)为0.11,非结核菌群的IOU为0.86,平均IOU为0.49,加权IOU为0.83。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tumor Budding Detection in H&E-Stained Images Using Deep Semantic Learning
Tumor buddings (TB), a special formation of cancerous cells that bud from the tumor front, are fast becoming the key indicator in modern clinical applications where they play a significant role in prognostic and evaluation of colorectal cancers in histopathological images. Recently, computational methods have been rapidly evolving in the domain of digital pathology, yet the literature lacks computerized approaches to automate the localization and segmentation of TBs in hematoxylin and eosin (H&E)-stained images. This research addresses this very challenging task of tumor budding detection in H&E images by presenting different deep learning architectures designed for semantic segmentation. The proposed design for a new Convolutional Neural Network (CNN) incorporates convolution filters with different factors of dilations. Multiple experiments based on a newly constructed colorectal cancer histopathological image collection provided promising performances. The best average intersection over union (IOU) for TB of 0.11, IOU for non-TB of 0.86, mean IOU of 0.49 and weighted IOU of 0.83 were observed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信