基于敏感参数学习的红外探测器故障分类与预测技术

Linlin Shi, Peiliang Yang, Pengfei Yu, Canxiong Lai, Zhenwei Zhou, Danni Hong
{"title":"基于敏感参数学习的红外探测器故障分类与预测技术","authors":"Linlin Shi, Peiliang Yang, Pengfei Yu, Canxiong Lai, Zhenwei Zhou, Danni Hong","doi":"10.1145/3579654.3579665","DOIUrl":null,"url":null,"abstract":"Infrared detector is an important device with a wide range of applications. Based on the fault sensitive parameter data of infrared detectors, this paper studies the fault classification and fault prediction model of infrared detectors by using machine learning methods such as neural network BPNN and long and short term memory network LSTM. Through the establishment and verification analysis of the fault classification model, it provides a model reference and basis for the multi-type fault diagnosis of infrared detectors. Through the establishment and analysis of the fault prediction model, it provides a modeling method for the lifetime prediction of infrared detectors. The application of infrared detector fault classification and prediction technology can improve the reliability of infrared detector products.","PeriodicalId":146783,"journal":{"name":"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infrared detector fault classification and prediction technology based on sensitive parameter learning\",\"authors\":\"Linlin Shi, Peiliang Yang, Pengfei Yu, Canxiong Lai, Zhenwei Zhou, Danni Hong\",\"doi\":\"10.1145/3579654.3579665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Infrared detector is an important device with a wide range of applications. Based on the fault sensitive parameter data of infrared detectors, this paper studies the fault classification and fault prediction model of infrared detectors by using machine learning methods such as neural network BPNN and long and short term memory network LSTM. Through the establishment and verification analysis of the fault classification model, it provides a model reference and basis for the multi-type fault diagnosis of infrared detectors. Through the establishment and analysis of the fault prediction model, it provides a modeling method for the lifetime prediction of infrared detectors. The application of infrared detector fault classification and prediction technology can improve the reliability of infrared detector products.\",\"PeriodicalId\":146783,\"journal\":{\"name\":\"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3579654.3579665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Algorithms, Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3579654.3579665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

红外探测器是一种重要的仪器,有着广泛的应用。基于红外探测器的故障敏感参数数据,利用神经网络BPNN和长短期记忆网络LSTM等机器学习方法,研究红外探测器的故障分类和故障预测模型。通过对故障分类模型的建立和验证分析,为红外探测器多类型故障诊断提供了模型参考和依据。通过对故障预测模型的建立和分析,为红外探测器寿命预测提供了一种建模方法。红外探测器故障分类预测技术的应用可以提高红外探测器产品的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infrared detector fault classification and prediction technology based on sensitive parameter learning
Infrared detector is an important device with a wide range of applications. Based on the fault sensitive parameter data of infrared detectors, this paper studies the fault classification and fault prediction model of infrared detectors by using machine learning methods such as neural network BPNN and long and short term memory network LSTM. Through the establishment and verification analysis of the fault classification model, it provides a model reference and basis for the multi-type fault diagnosis of infrared detectors. Through the establishment and analysis of the fault prediction model, it provides a modeling method for the lifetime prediction of infrared detectors. The application of infrared detector fault classification and prediction technology can improve the reliability of infrared detector products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信