简短的证明是将小分辨率变得简单

Eli Ben-Sasson, A. Wigderson
{"title":"简短的证明是将小分辨率变得简单","authors":"Eli Ben-Sasson, A. Wigderson","doi":"10.1145/375827.375835","DOIUrl":null,"url":null,"abstract":"We develop a general strategy for proving width lower bounds, which follows Haken's original proof technique but is now simple and clear. It reveals that large width is implied by certain natural expansion properties of the clauses (axioms) of the tautology in question. We show that in the classical examples of the Pigeonhole principle, Tseitin graph tautologies, and random k-CNFs, these expansion properties are quite simple to prove. We further illustrate the power of this approach by proving new exponential lower bounds to two different restricted versions of the pigeon-hole principle. One restriction allows the encoding of the principle to use arbitrarily many extension variables in a structured way. The second restriction allows every pigeon to choose a hole from some constant size set of holes.","PeriodicalId":432015,"journal":{"name":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"534","resultStr":"{\"title\":\"Short proofs are narrow-resolution made simple\",\"authors\":\"Eli Ben-Sasson, A. Wigderson\",\"doi\":\"10.1145/375827.375835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a general strategy for proving width lower bounds, which follows Haken's original proof technique but is now simple and clear. It reveals that large width is implied by certain natural expansion properties of the clauses (axioms) of the tautology in question. We show that in the classical examples of the Pigeonhole principle, Tseitin graph tautologies, and random k-CNFs, these expansion properties are quite simple to prove. We further illustrate the power of this approach by proving new exponential lower bounds to two different restricted versions of the pigeon-hole principle. One restriction allows the encoding of the principle to use arbitrarily many extension variables in a structured way. The second restriction allows every pigeon to choose a hole from some constant size set of holes.\",\"PeriodicalId\":432015,\"journal\":{\"name\":\"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"534\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/375827.375835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/375827.375835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 534

摘要

我们开发了一种证明宽度下界的一般策略,它遵循Haken的原始证明技术,但现在简单明了。它揭示了大宽度是由所讨论的重言式的子句(公理)的某些自然展开性质所隐含的。我们证明了在鸽子洞原理、tseittin图重言式和随机k-CNFs的经典例子中,这些展开性很容易证明。我们通过证明鸽洞原理的两个不同的限制版本的新的指数下界,进一步说明了这种方法的力量。一个限制允许原则的编码以结构化的方式使用任意多个扩展变量。第二个限制允许每只鸽子从一组固定大小的洞中选择一个洞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short proofs are narrow-resolution made simple
We develop a general strategy for proving width lower bounds, which follows Haken's original proof technique but is now simple and clear. It reveals that large width is implied by certain natural expansion properties of the clauses (axioms) of the tautology in question. We show that in the classical examples of the Pigeonhole principle, Tseitin graph tautologies, and random k-CNFs, these expansion properties are quite simple to prove. We further illustrate the power of this approach by proving new exponential lower bounds to two different restricted versions of the pigeon-hole principle. One restriction allows the encoding of the principle to use arbitrarily many extension variables in a structured way. The second restriction allows every pigeon to choose a hole from some constant size set of holes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信