{"title":"利用非参数切换状态空间模型对协同发音动力学建模的视觉语音合成","authors":"S. Deena, Shaobo Hou, Aphrodite Galata","doi":"10.1145/1891903.1891942","DOIUrl":null,"url":null,"abstract":"We present a novel approach to speech-driven facial animation using a non-parametric switching state space model based on Gaussian processes. The model is an extension of the shared Gaussian process dynamical model, augmented with switching states. Audio and visual data from a talking head corpus are jointly modelled using the proposed method. The switching states are found using variable length Markov models trained on labelled phonetic data. We also propose a synthesis technique that takes into account both previous and future phonetic context, thus accounting for coarticulatory effects in speech.","PeriodicalId":181145,"journal":{"name":"ICMI-MLMI '10","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Visual speech synthesis by modelling coarticulation dynamics using a non-parametric switching state-space model\",\"authors\":\"S. Deena, Shaobo Hou, Aphrodite Galata\",\"doi\":\"10.1145/1891903.1891942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel approach to speech-driven facial animation using a non-parametric switching state space model based on Gaussian processes. The model is an extension of the shared Gaussian process dynamical model, augmented with switching states. Audio and visual data from a talking head corpus are jointly modelled using the proposed method. The switching states are found using variable length Markov models trained on labelled phonetic data. We also propose a synthesis technique that takes into account both previous and future phonetic context, thus accounting for coarticulatory effects in speech.\",\"PeriodicalId\":181145,\"journal\":{\"name\":\"ICMI-MLMI '10\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICMI-MLMI '10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1891903.1891942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICMI-MLMI '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1891903.1891942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Visual speech synthesis by modelling coarticulation dynamics using a non-parametric switching state-space model
We present a novel approach to speech-driven facial animation using a non-parametric switching state space model based on Gaussian processes. The model is an extension of the shared Gaussian process dynamical model, augmented with switching states. Audio and visual data from a talking head corpus are jointly modelled using the proposed method. The switching states are found using variable length Markov models trained on labelled phonetic data. We also propose a synthesis technique that takes into account both previous and future phonetic context, thus accounting for coarticulatory effects in speech.