S. Gurbuz, Mohammad Mahbubur Rahman, Emre Kurtoğlu, D. Martelli
{"title":"基于FMCW雷达的连续人体活动识别与步长变异性分析","authors":"S. Gurbuz, Mohammad Mahbubur Rahman, Emre Kurtoğlu, D. Martelli","doi":"10.1109/BHI56158.2022.9926892","DOIUrl":null,"url":null,"abstract":"Human activity recognition (HAR) and gait analysis are important functions that support aging-in-place and remote health monitoring. Although there have been many works investigating HAR with radar based on single-activity snapshots in time, few works address recognition in continuous streams of radio frequency (RF) data, where in daily life many different activities are conducted. This work proposes a novel variable window averaging method to segment RF data streams containing a mixture of large-scale gross motor activities as well as fine-grain hand gestures, a physics-aware generative adversarial network (PhGAN) to recognize daily activities, and a new technique to estimate step-time variability from RF data. Our results show that extraction of motion detected intervals and GAN-synthesized samples during training boosts HAR accuracy, while the estimation variance of time-step variability from radar compares well with that obtained from a Vicon motion capture system.","PeriodicalId":347210,"journal":{"name":"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Continuous Human Activity Recognition and Step-Time Variability Analysis with FMCW Radar\",\"authors\":\"S. Gurbuz, Mohammad Mahbubur Rahman, Emre Kurtoğlu, D. Martelli\",\"doi\":\"10.1109/BHI56158.2022.9926892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human activity recognition (HAR) and gait analysis are important functions that support aging-in-place and remote health monitoring. Although there have been many works investigating HAR with radar based on single-activity snapshots in time, few works address recognition in continuous streams of radio frequency (RF) data, where in daily life many different activities are conducted. This work proposes a novel variable window averaging method to segment RF data streams containing a mixture of large-scale gross motor activities as well as fine-grain hand gestures, a physics-aware generative adversarial network (PhGAN) to recognize daily activities, and a new technique to estimate step-time variability from RF data. Our results show that extraction of motion detected intervals and GAN-synthesized samples during training boosts HAR accuracy, while the estimation variance of time-step variability from radar compares well with that obtained from a Vicon motion capture system.\",\"PeriodicalId\":347210,\"journal\":{\"name\":\"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BHI56158.2022.9926892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BHI56158.2022.9926892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Continuous Human Activity Recognition and Step-Time Variability Analysis with FMCW Radar
Human activity recognition (HAR) and gait analysis are important functions that support aging-in-place and remote health monitoring. Although there have been many works investigating HAR with radar based on single-activity snapshots in time, few works address recognition in continuous streams of radio frequency (RF) data, where in daily life many different activities are conducted. This work proposes a novel variable window averaging method to segment RF data streams containing a mixture of large-scale gross motor activities as well as fine-grain hand gestures, a physics-aware generative adversarial network (PhGAN) to recognize daily activities, and a new technique to estimate step-time variability from RF data. Our results show that extraction of motion detected intervals and GAN-synthesized samples during training boosts HAR accuracy, while the estimation variance of time-step variability from radar compares well with that obtained from a Vicon motion capture system.