E. H. V. Segundo, Gabriel Fiori Neto, A. M. D. Silva, V. Mariani, L. Coelho
{"title":"一种改进的连续优化引力搜索算法","authors":"E. H. V. Segundo, Gabriel Fiori Neto, A. M. D. Silva, V. Mariani, L. Coelho","doi":"10.1145/2598394.2602281","DOIUrl":null,"url":null,"abstract":"The gravitational search algorithm (GSA) is a stochastic population-based metaheuristic inspired by the interaction of masses via Newtonian gravity law. In this paper, we propose a modified GSA (MGSA) based on logarithm and Gaussian signals for enhancing the performance of standard GSA. To evaluate the performance of the proposed MGSA, well-known benchmark functions in the literature are optimized using the proposed MGSA, and provides comparisons with the standard GSA.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A modified gravitational search algorithm for continuous optimization\",\"authors\":\"E. H. V. Segundo, Gabriel Fiori Neto, A. M. D. Silva, V. Mariani, L. Coelho\",\"doi\":\"10.1145/2598394.2602281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The gravitational search algorithm (GSA) is a stochastic population-based metaheuristic inspired by the interaction of masses via Newtonian gravity law. In this paper, we propose a modified GSA (MGSA) based on logarithm and Gaussian signals for enhancing the performance of standard GSA. To evaluate the performance of the proposed MGSA, well-known benchmark functions in the literature are optimized using the proposed MGSA, and provides comparisons with the standard GSA.\",\"PeriodicalId\":298232,\"journal\":{\"name\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"190 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2598394.2602281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2602281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A modified gravitational search algorithm for continuous optimization
The gravitational search algorithm (GSA) is a stochastic population-based metaheuristic inspired by the interaction of masses via Newtonian gravity law. In this paper, we propose a modified GSA (MGSA) based on logarithm and Gaussian signals for enhancing the performance of standard GSA. To evaluate the performance of the proposed MGSA, well-known benchmark functions in the literature are optimized using the proposed MGSA, and provides comparisons with the standard GSA.